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Abstract 
 

Magnetic flux saturation and variation of the temperature during the operation of the motor causes a variation of inductive and resistive stator 
and rotor parameters. This article deals with these disturbances by backstepping technique with two Actions full. The first integral action applied 
to the speed and torque control aims to reinforce the robustness of the controller in the face of varying parameters. Second integral action is to 
reinforce the robustness of the control flow and the stator currents and rotor facing the parameter variation. The control technique is applied from 
a new model in the reference frame (α/β) whose state variables are constant in steady state unlike the conventional model. The performance of 
the control system is tested in a simulation in the Matlab/Simulink environment. The results show good transient performance and good tracking 
of the speed and rotor flux references. There has also been a good rejection of interference, due to variations load torque, of the reference of the 
rotor flux, mutual inductance and the rotor resistance. 
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INTRODUCTION  

 
The control of asynchronous motors has undergone 
considerable evolution over the last four decades thanks to the 
advent of power electronics and computers. These motors can 
now be used at variable speed and thus optimize their energy 
consumption. In addition, asynchronous motor because of the 
advantages it presents (robustness, lower costs, reduced 
maintenance) occupies a large share in the drive systems 
market. The first advanced techniques for controlling 
asynchronous motors, called vector control, made those of 
Branchk and Hass. This control technique made a radical 
change to the control of induction motors, as it brought good 
quality of motor performance in dynamic regime (Singh et al., 
2005; Santisteban and Stephan, 2001). The input-output 
linearization control generalizes the flow orientation control by 
ensuring the decoupling and the linearization between the 
inputs and the outputs (Chiasson et al., 1992; Zaidi et al., 
2014). This method assumes that all the state vectors are 
measurable and thus design a nonlinear state feedback control 
which ensures the stability of the closed loop system. This 
design is made possible by using the mathematical tools of 
differential geometry for the change of variable, and this in the 
Park coordinate system (d/q) in order to ensure that the new 
state variables are constant in steady state (Bodson et al., 
(1994). This change of reference increases the calculation time 
of the command. The direct torque control (DTC) gives the 
possibility of directly controlling the torque and the flux of the 
machine without going through tedious calculations of 
reference transformation (Ozkop and Okumus, 2008). But its 
drawback lies in the variation of the flux when it is outside its 
hysteresis band and its switching frequency which has given 
rise to some research work ( Kang, Jun-Koo, and Seung-Ki 
Sul, 1999; Lascu, Cristian et al., 2016; Zahraoui et al., 2019). 
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Since the 1990s, the nonlinear control called "Backstepping" 
will become one of the most popular controls for a wide range 
of classes of nonlinear systems including the asynchronous 
motor (Kristic et al., 1995; Okou et al., 2009). It is 
distinguished by its ability to easily ensure the overall 
stabilization system (Khalil and Grizzle, 2002). The design of 
the control law is mainly based on the construction of the 
associated Lyapunov functions. The application of the 
Backstepping command for the asynchronous motor can be 
done in two ways. The first method, the most used, is applied 
with oriented flow control. This method simplifies the 
asynchronous motor model, and the implementation of the 
Backstepping technique becomes easier (Tan, 1999; Fateh and 
Abdellatif, 2017). The second method uses the engine model 
by performing a deep analysis in order to build a regression 
matrix. This method is seldom used. The engine parameters 
change due to temperature change (rotor resistance) and 
magnetic saturation (in stator inductance, rotor and mutual) 
(Ostovic, 2012), during operation considerably affects the 
efficiency of the order. This variation of the parameters 
generally has the effect of establishing a steady state error 
when following the trajectory of the velocity and the flow. 
This problem has led to robust versions s and adaptive controls 
mentioned above (Barambones and Alkorta, 2011; Mehazzem 
et al., 2011; Zaidi et al., 2014; Hajji et al., 2019; Aichi et al., 
2020). However, these controls are designed in the axe (d/q) to 
ensure that the state variable model of engine is constant 
steady state. In practice, the calculation of the rotor angle θ r 
necessary for the change of reference frame (abc to dq) 
increases the execution time of the control algorithm. In the art 
work of (Ekang et al., 2020), a new model is proposed. This 
model has the advantage of having state variables expressed in 
the reference (α / β) are constant in steady state. In order to 
deal with the problem of parameter variation, we apply in this 
research the Backstepping technique with two integral actions 
for the control of the speed and the rotor flux. The 
Backstepping technique with integral action is designed from 
the energy model proposed by (Ekang et al., 2020). The 



advantage of applying this technique to this model is to reduce 
the execution time of the control algorithm. This saving in 
calculation time offers the possibility of adding two integral 
actions to ensure the robustness of the command in the face of 
parameter variations. This is the main contribution of this 
article. In order to achieve the objective of controlling the 
speed and the rotor flux in the face of the variation of the 
motor parameters, virtual models in the form of regression are 
obtained after analysis from the energy model. This article 
begins with a presentation of the new energy model of the 
engine in section II. In section III, the design of the 
Backstepping control with integral action is carried out. The 
analysis of the overall stability of the control is performed in 
this section. In section IV, the results following a test protocol 
are presented and discussed. This study was validated by 
simulation in the Matlab/Simulink environment. 
 

WOUND ROTOR OF INDUCTION MOTOR MODEL 
 
Variables of new dynamic model of wound rotor of 
induction motor  
 
The energy model (Marino, R and al (2010))is suitable for 
the numerical simulation of the asynchronous machine with a 
view to making an analysis of its dynamic behavior. It would 
be inappropriate for the design of a control system for the 
machine using non-design techniques linear moderns.  
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With: 2
s rL L M    

 

Lr Ls and M: are respectively the rotor, stator 
and mutual inductances. Rr and Rs are rotor and stator 
resistance .isα, isβ:  are the components of the rotor currents in 
the (α/β) reference frame. ω is the rotor speed in rad /s.  
 

In fact, these methods of design require of models whose 
variables of state are constant permanent regime. That's not the 
case of the model energy whose components alpha and beta 
stator currents and rotor are sinusoidal in scheme permanent. 
This problem could be solved by transforming the frame of 
reference (α/β) to the frame of reference d/q. It is well known 
that the components d/q variable machine power is constant 
permanent regime. However,the main disadvantage of the d/q 
transformation is that it must be used in conjunction with its 
inverse transformation and both transformations are nonlinear 
and variables over time. Indeed, it depends on the angle of the 
rotor which is a variable dynamic. The use of these two 
transformations can therefore be very costly in computing 
time. In the work of (Ekang et al., 2020), a new representation 
of the asynchronous machine is made in the repository (α/β) 
with the constant state variables steady. The change of 
variables which is proposed is nonlinear and static. The new 
model is therefore ideally suited for the use of modern 
nonlinear design methods such as feedback linearization and 
the recursive Backstepping command. The state variables for 
modelling the asynchronous machine are as follows: 
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The variable ∑ is proportional to the electromagnetic 
torque. The variable Ф is the dot product between the stator 
and rotor currents. The physical meaning of this variable 
remains to be determined. The variable R is the square of the 
RMS rotor current. The variable S is the square of the RMC 
stator current. 
 
New model of wound rotor of induction motor 
 
The dynamics of the new model is obtained by deriving the 
new variables identified by equations (2) (3) (4) and (5) and by 
taking into account the dynamics of the motor speed. The 
model is: 
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Where TL is the load torque N.m. J is the moment of inertia. 
 
We note the presence Usr and Uss inputs defined as follows: 
 

sr r s r s

ss s s s s

u i u i u

u i u i u

   

   

 

   (11)  

These new inputs are the dot products of the components of the 
stator voltages and the rotor currents respectively. The 
dynamic of the angles of the rotor flux at their reference 
values. They are not shown for simplicity but also because 
they are not useful for the design brought to e to the next 
section. 
 

BACKSTEPPING CONTROL DESIGN 
 
The model shown in the previous section is used in this section 
for the design of the control system. It should be remembered 
that all machine state variables are measurable. We propose to 
control the mechanical speed and the rotor flux at their 
reference values. The model of the machine is 
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nonlinear. Therefore, we propose the use of the recursive 
design method called Backstepping to obtain the structure of 
the control system and the control laws. The design method 
makes it possible to structure control system in two loops 
consisting of a speed control in series with a torque control and 
flux control in series with a current control. 
  
Integral Backstapping control for speed and torque 
 
For the design of speed and torque control loop, dynamics of 
mechanical speedω and that of Σshould be used such that: 
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The integrator is defined for the speed and torque control by 
considering the dynamics of speed error as a state variable.  
 
e1error is therefore Ωωand its dynamic is : 

 
ωrefis reference value of the mechanical speed. 
 
Expression ofωfor which the dynamic of error is defined 
negative is : 

 
ω*is not real input of the system, we defined an errore2.  

 
From equations (13) and (14), we can rewrite dynamics of 
e1error as function e2 : 

 
From equations (13) and (15), dynamics ofe2error gives: 

 
Equation (17) makes it possible to determine the value that the 
variable Σshould have in order to make’s speed errors 
converge towards zero. This desired value of Σvariable has the 
expression : 

 
Next step will make it possible to determine the expression of 
U1which causeΣvariable to converge towards its reference 
which is Σ*. To do it we define the following error. 
 

 

Equations (18) and (19)make it possible to rewrite the 
dynamics of speed error e2as follows: 

 
Dynamics ofe3error give: 
 

 
Expression of U1is determined in such a way that the dynamic 
e2error converges towards zero in a closed loop. We obtained 
 

 
Close-loop dynamics of e3error obtained by substituting 
equation (21) in equation (22). 
 

 
In the next section, design of flux control is presented. 
Backstepping control with integral action is also used to 
structure this control loop. 
 
Backstepping control design for rotor flux and current 
 
The objective being to control the rotor flux, it is necessary to 
express this stream depending on variables state of 
the machine. In addition to integrators, virtual model into 
triangular form to control the flux control and current control 
is: 
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2 

 
The controller for flux control and current stator and rotor is 
thus designed from the system equation (24). Integral action is 
added to the controller by defining the change in variable 
described by the first equation of the system (24). 
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The dynamics of the flux modulus error which introduces the 
integral action is described as follows: 

 
ExpressionΨ2r which makes it possible to converge dynamic e4 

towards zero is : 

 
Equation (26) is not real input to the system, so we defineits 
error as: 

 
From equations (26) and (27) we can rewrite the dynamic of 
e4error as a function ofe5 error: 

 
By deriving equation (27) and substituting equation (24), (26) 
we determine dynamic e5 error: 
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order to make the dynamics of e5converge towards zero. This 
value is noted K* and has for the expression: 
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Output Controller expression 
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control inputs which are the α/β components of the stator 
voltages usa and usb. They are obtained from U1 and U 2 

 determine previously. Equations (22) and (34) allow us to 
have the following matrix system of equations: 
 

 
Real input usa and usb have for expression: 
 

Figure 1 following represents the structure of the speed control 
system and the proposed stream. There are indeed two control 
loops.  The first loop consists of a control of speed followed by 
a control of torque. The speed command generates a reference 
to the torque command. The second loop contains a flux 
module control in series with a current control. The reference 
of the current control is generated by the flow control. The 
control structure obtained by applying the recursive method 
Backstepping is similar to the conventional control structure of 
asynchronous motors. It nevertheless has a considerable 
advantage which is that it is nonlinear and it makes it possible 
to guarantee the closed-loop stabilization of the system. The 
proof of stability is shown in the next section. 
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control 
 
Global stability analysis 
 
Stability analysis is done by the Lyapunov method. We define 
the following Lyapunov candidate function: 
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V derivative is obtained from equation (38), it gives: 
 

By replacing (22),(26), (37)and (34)in equation (39) we have: 
 

 
 

0V  for allki≥0{i=1,2,3,4,5,6}. It is easily noted that this 
candidate function is positive definite the system is therefore 
asymptotically stable. Therefore, the motor speed and the rotor 
flux will converge towards their reference values. 
 
Global Structure Control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows the control system of the induction motor rotor 
is wound. It is noted that the three-phase stator and rotor 
currents as well as the speed of the motor are 
measured. The α/β components of the currents are then 
obtained using two Clark transformation moduli. Then, the 
variable change module proposed in this article is used to 
power the module which calculates the α/β components of the 
stator voltages applied to the motor. The module transforms 
the α/β components of the stator voltage into three-phase 

components (abc). This three-phase voltage is applied to the 
module of the converter DC/AC power electronics. The 
outputs of this inverter are applied to the stator of the motor. 
The gains k1, k2, k3, k4, k5 and k6of the controller, the maximum 
values of the stator voltages are as well as the motor 
parameters given in the appendix. The following section 
presents the results of the simulations performed to validate the 
performance of the proposed control system. 
 

RESULTS AND DISCUSSION 
 
A. Test Description 
 
A single test over 10s is carried out in order to verify the 
performance of the proposed command faced with the 
variation of the load torque (TL) , of the reference speed 
(ω ref ) , of the reference flow (Ψ ref ) and of the parameters of 
motor. From 0 to t=4s the machine is in steady state and e 
c load torque is TL = 4902.6 Nm. The mechanical speed  
ω ref = 378.14 rad/s, the rotor flux is Ψ 2rr ef = 4.494 Wb. At t = 
3s, Rs increases by 10 times its nominal value. We wish to 
observe the robustness of the speed control in the face of this 
variation. At t=4s, the mechanical torque of the load is 
increased to TL=8171 Nm. The speed and flow set points are 
respectively ω ref = 378.14 rad / s and Ψ 2rr ef = 4.494 Wb. We 
wish to observe the dynamics of the electric torque Te, of the 
mechanical speed ω and of the rotor flux during an increase in 
the load TL.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At t =5s, Rr=5R rN the rotor resistance increases by 5 times its 
nominal value. We wish to observe the robustness in the face 
of the variation of the rotor resistance. At t=6s, the value of the 
speed reference is reduced to ω ref =295.51 rad/s. The 
mechanical torque and the flux reference remain 
unchanged: TL=8171Nm and Ψ 2rr ef = 4.494  Wb. We wish to 
observe the dynamics of the electric torque Te, of the speed of 
rotation ω and of the rotor flux when the reference speed is 
reduced.  At t=7s the Lr, Ls and Lm increase respectively by 
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Figure 2. Global Structure Controller 
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40% of their nominal value. At t=8s, the reference value of the 
rotor flux is reduced to Ψ 2rr ef =3.177 Wb. The mechanical 
torque and the mechanical speed reference are unchanged: 
TL=8171 Nm and ω ref =295.51 rad/s. We wish to observe the 
dynamics of the electric torque Te, of the mechanical 
speed ω and of the rotor flux during a reduction of the 
reference flux.  
 
Results of the test 

 

 
 

Figure 3. Load torque and electric torque variation 
 

 
 

Figure 4. Speed variation 
 

 
 

Figure 5.  Flux modulusvariation 
 

 
 

Figure 6.  Stator voltage variation 

 
 

Figure 7.  Stator current variation 
 

 
 

Figure 8. Rotor current variation 
 
Discussion  
 
At t = 4s, the load torque varies (Figure 3) increasing up to 
8171 N.m, we observe in figure 4 a slight variation in speed 
then quickly returns to its reference trajectory. At t = 6s the 
speed varies, in FIG. 3, a reduction in the electric torque is 
observed, then quickly returns to the value of the load torque. 
In figure.5, the rotor flux increases and then stabilizes at its 
reference value. At t = 8s, the flux (figure 5) is reduced; in 
figure. 4 and figure.5, a slight variation in the electrical torque 
and in the speed is observed, then return to their reference 
value. The control system is robust against the variation of 
load torque, speed and rotor flux as in (Horch et al., 2017). At t 
= 3s, 5s and 7s, the stator and rotor resistance and the stator, 
rotor and mutual inductances varying. It can be seen in FIG. 3 
that the electric torque reduces and quickly returns to the value 
of the load torque. In figure.4, the speed reduces then quickly 
returns to its reference value. In Figure 5, the rotor flux is 
reduced then returns to its reference value. The control force U 
is then increased (figure 6) and the amplitudes of the stator and 
rotor currents remain constant (figure 7 and figure 8). The 
system is therefore robust in the face of variations or 
uncertainties to motor parameters such as in (Mehazzem et al., 
2011). This robustness is provided by the addition of integral 
action in the control loops.Failure to do so will result in a 
steady state error in rotor speed and flux rotor. 
 

CONCLUSION 
 
In this work, Backstepping control with integral action for 
controlling the speed and rotor flux has been applied to wound 
rotor motor of induction motor in order to enhance its 
robustness to the variation of these parameters. The control 
was designed on an energy model in which the state variables 
in the α/β frame of reference are constant in steady state. 
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Moreover, the triangular structure of this model corresponds to 
the recursive character necessary for the design of the 
Backstepping control. The recursive Backstepping design 
method with integral action was used to propose a control 
structure in which a speed control loop in series with a torque 
command to control the mechanical motor speed, and a 
different loop flow control in series with a current control to 
control the rotor flux of the machine. The proposed control 
system was then tested in simulation in my Matlab/Simulink 
environment. The results show the effectiveness of the 
proposed command. The speed and flux controller is robust 
against disturbances due to variations in load torque and 
variations in motor parameters. The motor model does not take 
into account the saturation functions of the magnetic flux. 
 
Appendix: 
 

Wound rotor of induction motor parameters 
 

Motorloadinertia J=63.87 Kgm2 
Stator resistance Rs=0.029 ohm 
Rotor resistance Rr=0.022 ohm 
Stator inductance Ls=0.0352 H 
Rotor inductance Lr=0.0352 H 
Mutual inductance M=0.0346 H 
Max voltage stator 2.5 kV 

 
Gains of controller 

 

K1 20 
K2 100 
K3 50 
K4 12 
K5 60 
K6 30 
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