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Abstract 
 

Abstract: The variational moment approach for the neutrons scattering analysis by ��,��  nucleus within the energy range (60-80) MeV is applied 

to the construction of the complex single-particle mean field felt by neutrons in �� �� , starting from negative energy values to the positive energy 
values. The results according to the variational moment approach would contain: the continuous energy variations of the radial moments of the 
real and imaginary parts of the mean field, which are connected by dispersion relations, were compared with these resulting from global 
parameterization of the optical model potential, and the continuous energy variations of the volume and surface depths of the imaginary part of 
the mean field, also the continuous energy variations of the radius parameter of the Wood-Saxon approximation to the mean field potential, In 
addition to the continuous energy variation of the depth of the real potential obtained by adding dispersive correction with its Hartree-Fock 
approximation of the nonlocal potential and determining the behavior of the energy dependence of both two depths. Consequently, our results of 
the continuous energy variations of: the radial moments of the real and imaginary parts of the mean field showed the excellent agreement with 
these resulting from global parameterization of the optical model potential and with these resulting from the single fits of the potential 
parameters of the experimental data, the predicted total cross section within the energy range (10-153) MeV and elastic differential cross section 
for selected energies (60, 65 and 70) MeV showed the excellent agreement with available experimental data and better than these resulting from 
global parameterization of the optical model potential. 
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INTRODUCTION  

 
The nuclear optical model potential is of the fundamental 
importance concepts in the nuclear physics. It describes the 
motion of one nucleon, bound or unbound, in the mean field of 
all the other nucleons comprising the nucleus. The field due to 
the sum of all the individual nucleon-nucleon interactions is 
thus represented by a simple one-body potential. This 
approximation greatly simplifies the calculation of a wide 
range of nuclear structure and nuclear reaction phenomena, in 
addition to the excellent agreement with experimental data 
(Hodgson, 1990). The application of the concept of the nuclear 
mean field is for understanding the properties of bound single-
particle states and for elastic scattering of unbound nucleons 
(Hodgson, 1990; Koning and Delaroche, 2003; Mahaux and 
Sartor, 1991). 
 
The phenomenological optical model potential for nucleon-
nucleus scattering, �, is defined as (Koning and Delaroche, 
2003; Mahaux and Sartor, 1991; IAEA, 2006; Melkanoff et al., 
1961; Al-Mustafa and Belal, 2019 & 2020): 
 
�(�, �) = −��(�, �) − ���(�, �). �⃗. �⃗ + ��(�, �) + ��(�)

+  ��−��(�, �) − ��(�, �) + ���(�, �). �⃗. �⃗�         (1) 

 
Where ��,� and ��,�,�� are the real and imaginary components 
of the volume-central (�), surface-central (�) and spin-orbit 
(��) potentials, respectively. �is the LAB energy of the 
incident particle in ���. All components are separated in 
energy-dependent well depths, ��, ��, ���, ��, �� and ���, 
and energy-independent radial parts �, namely 
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The form factor �(�, ��, ��) is a Wood-Saxon shape 
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Where the geometry parameters are the radius �� = ���
�

�,, with 
� the atomic mass number, and the diffuseness parameters 
��, � = �, ��, �. For neutrons scattering, the value of the 
coulomb term ��, is zero. By solving the Schrödinger 
equation numerically with this complex potential yields a 
wealth of valuable information; it returns a prediction for the 
basic observables, namely the elastic angular distribution and 
the reaction and total cross section (IAEA, 2006; Melkanoff et 
al., 1961; Al-Mustafa and Belal, 2019 & 2020). The 
variational moment approach (VMA)describes the continuous 
energy variation of the constructed complex mean field and the 
radial moments (volume integral per nucleon)of their 

components felt by neutrons in Cu��  which incorporates 
thedispersion relation that connects their real and imaginary 
parts, and reliable in an energy domain which typically extend 
from energies below to energies above the Fermi energy ��. 
Moreover, the mean field is required to closely reproduce the 
experimental value of the Fermi energy.and so the reliable 
determination of the mean field is perfect by comparing a 
prediction of the cross sections with these are measured 
experimentally. There are many published studies for detailed 



analyses of data for the neutron scattering state, some of these 
studies depended on the single fits of the experimental data and 
others depended on dispersion relations. In both states our 
dependence is on global parametrization of the optical model 
potential which agree with the energy and atomic mass ranges 

of the Cu ��  nucleus. The present paper aims at presenting the 
variational moment approach (VMA) of the neutrons scattering 

by Cu  �� nucleus and comparing the results with these resulting 
from global parametrization of the optical model potential and 
available experimental data within energy range (60-80) MeV 
and its extend to the reliable low and high energy domain from 
the studied energy range according to evaluated fitting 
methodology. 
 

METHODOLOGY 
 
The methodology of (VMA) is summarized as follows (Koning 
and Delaroche, 2003; Mahaux and Sartor, 1991; IAEA, 2006; 
Melkanoff et al., 1961; Al-Mustafa and Belal, 2019 & 2020; 
Romanovsky et al., 1993 & 1995 ): 
 
Volume integral per nucleon 
 
Determining the continuous energy variation of the volume 
integral per nucleon by using Brown-Rho (Br) expression: 
 
For the central imaginary part of the nuclear mean field: 
 

[��]�(�) = �
(����)�
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The imaginary part has a volume and a surface component, the 
volume component is, 
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So, the surface component is, 
 
[��]��

(�) = [��]�(�) − [��]��
(�)                                         (6) 

 
where �, ��, ���

 denote Brown-Rho parameters, �� is: 

 

�� =
��

�
                                                                                              (7) 

 
Where, �� , the Fermi energy in MeV, that is defined as the 
energy halfway between the last occupied and the first 
unoccupied shell of the nucleus, determined from the 
experimental masses as follows (Wapstra and Gove, 1971): 
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Where ��

� is the negative of the separation energy of a nucleon 
from the (A+1)-nucleon system. Also, ��

� is the negative of the 
separation energy of a nucleon from the A-nucleon system, � 
is the atomic mass of the incident particle. 
 
Depths of the Volume and Surface Absorption of the Mean 
Field 
 
Determining the continuous energy variation of the volume 
and surface absorption depths, 

W�(E) = [��]��
(�) g��⁄ , MeV                                                  (9) 
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Where g��,g��can be written as follows: 
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Where ��� = �����

�

�, ���, ��� = �����

�

�, ���  are the radius 
and diffuseness parameters of the volume and surface 
absorption. 
 
Volume integral per nucleon of dispersive corrections of the 
real part of the mean field 
 
The dispersion relations are a natural result of the causality 
principle that a scattered wave cannot be emitted before the 
arrival of the incident wave.  
 
The dispersion component stems directly from the absorptive 
part of the potential, 
 

∆�(�, �) =
�

�
∫
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Where � denotes the principal value. The total real central 
potential can be written as the sum of a Hatree-Fock term 

�
��

(�, �) and the total dispersion potential ∆�(�, �) 

 

�(�, �) = �
��

(�, �) + ∆�(�, �)                                               (14) 

 
Since �(�, �) has a volume and a surface component, the 
dispersive addition is, 
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Where the volume dispersion term is given by 
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And the surface dispersion term is given by 
 

∆��(�) =
�
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In general, “(16)” & “(17)” cannot be solved analytically. 
However, under certain plausible conditions, analytical 
solutions exist. Under the assumption that the imaginary 
potential is symmetric with respect to the Fermi energy ��  
 

�(�� − �) = �(�� + �)                                                          (18) 
 
Where � denotes either the volume or surface term, we can 
rewrite the dispersion relation as, 
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Determining the continuous energy variation of the volume 
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integral per nucleon of dispersive corrections of the real part of 
the mean field is obtained by using the dispersion relations: 
The total dispersive correction: 
 

[��]∆��
(�) =

�

�
(� − ��) ∫

[��]���′�

��′����
�

�(����)�
��′                

∞

��
(20) 

 
The volume dispersive correction: 
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So, the surface dispersive correction is: 
 
[��]∆���

(�) = [��]∆��
(�) − [��]∆���

(�)                           (22) 

 
Depths of the dispersive corrections of the real optical 
potential 
 
Determining the continuous energy variation of the depths of 
the dispersive corrections of the real optical potential: 
 
The volume dispersive correction: 
 
∆V�(E) = [��]∆���

(�) g��⁄ , MeV                                           (23) 

 
The surface dispersive correction: 
 
∆V�(E) = [��]∆���

(�) g��⁄ , MeV                                           (24) 

 

So, the total dispersion potential ∆�(�, �) calculated from 
“(15)”, at � = 0. 
 
Depth of the total real central potential 
 
Determining the continuous energy variation of the depth of 
the total real central potential: 
 
We determine the depth from “(14)”, at � = 0, 
 
Assumption that the Hatree-Fock term has a Wood-Saxon 
radial shape with energy-independent geometrical parameters 
(���, ���) is given by 
 

�
��
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Where the depth �
��

(�) is given by the following 

parametrization: 
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Where α��, the slope parameter, ��� = ����� �⁄ , radius 

parameter, �
��

(E�) is the depth at Fermi energy. 
 
Volume integral per nucleon of the real potential 
 
Determining the continuous energy variation of the volume 
integral per nucleon of the real potential: 
 

The volume integral per nucleon of the real potential is given 
by: 
 

[��]�(�) = [��]��(�) + [��]∆��
(�)                                      (27) 

Where [��]��(�), the volume integral per nucleon of the 
Hartree-Fock that can be written as follows, 
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Where ���, is given by 
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Radius parameter of the total real central potential 
 
Determining the continuous energy variation of the radius 
parameter of the Woods-Saxon approximation to the full 
potential. 
 
We determine the radius parameter of the Woods-Saxon 
approximation to the full optical potential from the equation: 
 

��(�)� + (���)���(�) − �
�

��
� ��(�)���� = 0                  (30) 

 
Where ��, diffuseness parameter and ��(�), can be 
determined from the relation: 
 

��(�) = [��]�(�) �(�)⁄                                                             (31) 
 
So, the radius parameter will be: 
 

r�(E) = R�(E)A�� �⁄                                                                     (32) 
 
Comparing with the global parameterizations of the optical 
model potential 
 
After calculating the volume integral per nucleon of the mean 
field components, we have compared them with global 
parameterizations of the optical potential, in addition to 
calculating the depths and the geometrical parameters whose 
calculations have been performed in the (VMA) program: 
 
1. Koning and Delaroche (Kd) [2], for 

0.001 ≤ E ≤ 200 Mev, Z� = (12 − 83), A� = (24 − 209) 
2. Madland (Md) [11,15], for 

50 ≤ E ≤ 400 Mev, Z� = (6 − 82), A� = (12 − 208) 
 
Also, we have compared our results with these global 
parameterizations for the continuous energy variations of the 
predicted total cross sections, in addition to elastic differential 
cross section for the energy values (60, 65 and 70) MeV and 
within the angular range of the center-of-mass scattering angle 
(2° − 172°)whose calculations have been performed in the 
(SPI-GENOA) program (Perey, 1975). 
 

RESULTS AND DISCUSSION 
 
The results According to the (VMA) and (SPI-GENOA) 
programs are summarized as follows: 
 
Input Parameters 
 
The values of the input parameters in the VMA program for 

the neutrons scattering by Cu��  nucleus are showed in the 
(Table 1). 
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Volume integrals per nucleon of the imaginary parts of the 
mean field 
 
The energy dependence of the volume integrals per nucleon of 
the imaginary parts of the mean fields are compared with these 
resulted from global parameterizations of the optical potential 
and with these resulting from the single fits of the potential 
parameters of the experimental data according to SPI program, 

within the energy range ��� − 120�MeV, as they are showed 

in the Figure (1). From the figure it becomes clear for us: The 
energy dependence of the volume integrals per nucleon 
showed agreement in the behavior comparing with   these 
resulted from global parameterization of the optical model 
potential, and fitting of these resulted from the single fits of the 
available experimental data. 
 

 
 
Figure 1. Volume integrals per nucleon of the imaginary parts of 
the mean field as a function of neutron energy (the red line) 
compared with these resulted from global parameterization of the 
optical model potential and with these resulted from the single fits 
of the potential parameters of the experimental data. 

 
Depths of the imaginary parts of the mean field 
 
The energy dependence of the depths of the (volume and 
surface) imaginary parts of the mean field within the energy 
range (from -100 to +100) MeV are showed in the Figure (2). 
From the figure we have observed a rapid variation of the 
depths in the vicinity of the Fermi energy and slowly variation 
toward the highly energies which are ascribed to a strong 
coupling between the elastic channel and the other reaction 
channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Volume integral per nucleon of total dispersive correction 
of the real part of the mean field 
 
The energy dependence of the volume integral per nucleon of 
total dispersive correction of the real part of the mean field 
within the energy range from (-100 to +100) MeV is showed in 
the Figure (3). 
 

 
 

Figure 2. Depths of the (volume and surface) imaginary parts of 
the mean field as a function of neutron energy 
 

 
 

Figure 3. Volume integral per nucleon of total dispersive 
correction of the real part of the mean field as a function of 
neutron energy 
 
Volume integral per nucleon of the real part of the mean 
field 
 
The energy dependence of the volume integral per nucleon of 
the real part of the mean field obtained using dispersion 
relations with its HF approximation of the nonlocal potential 
for bound and unbound energies are compared with these 

Table 1. The values of the input parameters 
 

Brown-Rho Parameters 
��, ��� ρ

��
, MeV �, ���. ��� E� (MeV) 

11.0 58.0 93.0 -10.8848128 
Geometrical Parameters 

��, �� ���, �� ��, �� ���, �� a�, fm 
0.664 1.261 1.261 0.602 0.602 

Hartree-Fock Parameters 
���, �� a��, fm α�� �

��
(E�), MeV 

1.236 0.62 0.448 492.59 
(Spin- Orbit) term Parameters 

���, �� ���, �� ���, �� a��, fm 
6.8 0.0 1.2 0.6 

(Projectile-Target) Parameters 
�� ��(���)[��] �� A� (amu) [14] 

0.0 1.0086 29 59.594 
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resulted from global parameterizations of the optical potential 
and with these resulted from the single fits of the potential 
parameters of the experimental data (Jeukenne and Mahaux, 
1986) according to SPI program. as they are showed in the 
Figure (4). 
 

 
 

Figure 4. Volume integral per nucleon of the real part of the mean 
field as a function of neutron energy compared with these resulted 
from global parameterization of the optical model potential and 
with these resulted from the single fits of the potential parameters 
of the experimental data 
 
Depth of the total real central potential 
 
The energy dependence of the depth of the total real central 
potential obtained by adding dispersion correction with its HF 
approximation of the nonlocal potential for bound and 
unbound energies are showed in the Figure (5).  
 

 
 

Figure 5. The energy dependence of the depth of the Wood-Saxon 
approximation to the mean field potential with its HF 
approximation 
 
From the figure it becomes clear for us: The energy 
dependence behavior of both two potentials are the linear 
behavior according to the two following equations: 
 
��(�) =  −0.3233 E + 54.024                                                 (33) 
 
���(�) = −0.3914 E + 53.496                                                (34) 
 
The real radius parameter of the mean field 
 
The energy dependence of the real radius parameter of the 
Wood-Saxon approximation to the mean field potential within 
the energy range from -80 MeV to 110 MeVis showed in the 
Figure (6). From the figure we have observed a rapid variation 
of the real radius parameter (a characteristic wiggle) in the 
vicinity of the Fermi energy and then slow variation toward the 
high energies. This wiggle is thus due to a strong coupling 
between the elastic channel and the other reaction channels. 

 
 

Figure 6. The energy dependence of the radius parameter of the 
Wood-Saxon approximation to the mean field potential with its 
HF approximation 
 
Cross sections 
 

The total cross section within the energy range (5 − 153) MeV 
is compared with these resulted from global parameterizations 
of the optical potential and with available experimental data 
(Taylor and Wood, 1941; TENDL, 2019), and are (mb), as they 
are showed in the Figure (7). There is excellent agreement with 
the experimental data and the global parameterization of the 
optical potential according to our calculations in the (SPI-
GENOA) program. 
 

 
 

Figure 7. The energy dependence of the total cross section (the red 
line) compared with experimental value and with these resulted 
from global parameterization of the optical model potential 
 
Elastic differential cross sections and polarization for 
selected energy 
 

The elastic differential cross sections for selected energies 
whose magnitude (60, 65 and 70) MeV compared with these 
resulted from global parameterizations of the optical potential, 
which are showed in the Figures (8-10).  
 

 
 

Figure 8. Dependence of the elastic differential cross section upon 
the center-of-mass scattering angle (the red line) compared with 
these resulted from global parameterization of the optical model 
potential, for ���� = �� ��� 
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Figure 9. Dependence of the elastic differential cross section upon 
the center-of-mass scattering angle (the red line) compared with 
these resulted from global parameterization of the optical model 
potential, for ���� = �� ��� 
 

 
 

Figure 10. Dependence of the elastic differential cross section 
upon the center-of-mass scattering angle (the red line) compared 
with these resulted from global parameterization of the optical 
model potential, for ���� = �� ��� 
 
There is an excellent agreement with the global 

parameterization of the optical model potential (TENDL, 
2019) according to our calculations in the (SPI-GENOA) 
program. 
 
Conclusion 
 
The important conclusions can be shown as follows: 
 

i. Our analysis of the neutrons scattering by Cu��  
nucleusaccording to the variational moment approach 
drawn for certain input values of the mean field 
parameters. 

ii. Our calculation of the continuous energy variations of 
the volume integrals per nucleon of the imaginary parts 
of the mean fields showed an excellent agreement with 
these resulted from global parameterizations of the 
optical potential and with these resulted from the single 
fits of the potential parameters of the experimental total 
cross sections data. 

iii. Our calculation of the continuous energy variation of 
the depths of the (volume and surface) imaginary parts 
of the mean field for bound and unbound energies 
showed excellent agreement in the behavior 
(symmetric) in the vicinity of the Fermi energy. 

iv. Our calculation of the continuous energy variation of 

the volume integral per nucleon of the real part of the 
mean field obtained by adding dispersion correction 
with its HF approximation of the nonlocal potential for 
bound and unbound energies showed an excellent 
agreement with these resulted from global 
parameterizations of the optical potential and with these 
resulted from the single fits of the potential parameters 
of the experimental total cross sections data. 

v. Our calculation of the continuous energy variation of 
the depth of the real part of the mean field obtained by 
adding dispersion correction with its HF approximation 
of the nonlocal potential for bound and unbound 
energies showed the energy dependence behavior of 
both two potentials are the linear behavior according to 
the two equations (33-34). In addition to continuous 
energy variation of the real radius parameter of the 
Wood-Saxon approximation to the mean field potential 
is a characteristic wiggle in the vicinity of the Fermi 
energy. This wiggle is thus due to a strong coupling 
between the elastic channel and the other reaction 
channels. 

vi. Our prediction of the total cross section data within the 
energy range (5 − 153) MeV showed excellent 
agreement with available experimental data and the 
better than these resulted from global parameterization 
of the optical model potential. 

vii. Our prediction of the elastic differential cross section 
and polarization data for selected energies (60,65 and 
70) MeV within the angular range ��� = (2° − 172°), 
showed excellent agreement with these resulted from 
global parameterization of the optical model potential. 
and thus more reliable for calculation the cross sections 
of unknown interactions of elements nuclei and their 
isotopes such as neutrons scattering by titanium element 
nucleus and its natural isotopes. 
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