International Journal of Science Academic Research

Vol. 02, Issue 04, pp.1368-1375, April, 2021 Available online at http://www.scienceijsar.com

Research Article

FUZZY DOT IDEAL OF BCK/BCI-ALGEBRAS

*Najati, S. A.

Department of Mathematics and Statistics, Taif University, Taif-AL-Haweiah, KSA

Received 17th February 2021; Accepted 13th March 2021; Published online 30th April 2021

Abstract

The concept of fuzzy dot subalgebra of BCK/BCI-algebras was introduced by Jun and Hong [5]. In this paper, we introduce the concept of fuzzy dot ideal, and study its some characterizations and properties. Also, we give a relation between a fuzzy dot ideal in theorems.

Keywords: BCK/BCI-algebras, fuzzy dot subalgebra, fuzzy dot ideal.

INTRODUCTION

The notion of *BCK*-algebra was introduced by Imai and Iseki in 1966 [2]. In the same year Iseki [3] introduced the notion of a *BCI*-algebra which is a generalization of a *BCK*-algebra. After the introduction of the concept of fuzzy sets by Zadeh [11], several researches worked on the generalization of the notion of fuzzy sets. Jun and Hong [5] introduced a fuzzy dot subalgebra in *BCK/BCI*-algebras and investigated some properties. In this paper, we introduce the notion of fuzzy dot ideal and give some fundamental properties and characterizations of fuzzy dot ideal of *BCK/BCI*-algebra.

PRELIMINARIES

In this section, some basic definitions and properties of BCK/BCI-algebras and fuzzy sets in BCK/BCI-algebras are given. By a BCI-algebra X, we mean an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

$$BCI - 1 ((xy)(xz))(zy) = 0,$$

$$BCI - 2 (x(xy))y = 0,$$

$$BCI - 3 \quad xx = 0$$

$$BCI - 4 xy = 0 \text{ and } yx = 0 \Rightarrow x = y$$
,

where, xy = x * y, and xy = 0 if and only if $x \le y$ for all $x, y, z \in X$.

A BCI-algebra X satisfying $0 \le x$, for all $x \in X$ is called a BCK-algebra. In a BCK/BCI-algebra X, the following properties hold for all $x, y, z \in X$.

P-1
$$x = 0 = x$$
.

P-2
$$(xy)z = (xz)y$$
.

P-3
$$x \le y$$
 implies that $xz \le yz$ and $zy \le zx$.

P-4
$$(xz)(yz) \le xy$$
 [5].

If X is a BCK-algebra, then the inequality $xy \le x$ holds for all $x, y \in X$

Next, we review some fuzzy concepts. A fuzzy set of X is a function $\mu: X \to [0,1]$. The set $\mu_t = \{x \in X \mid \mu(x) \ge t\}$, where $t \in [0,1]$ is called the level subset of μ .

A nonempty subset I of a BCK/BCI-algebra X is called an *ideal* of X, if it satisfies:

(I-1) $0 \in I$

(I-2) $xy \in I$ and $y \in I$ imply that $x \in I$, for all $x, y \in X$.

*Corresponding Author: Najati, S. A.

A fuzzy set μ of a BCK/BCI-algebra X is said to be a fuzzy ideal ([1],[4]) of X, if it satisfies: (FI-1) $\mu(0) \ge \mu(x)$,

(FI-2) $\mu(x) \ge \min \{ \mu(xy), \mu(y) \}$, for all $x, y \in X$.

FUZZY DOT IDEAL

Definition 3.1. ([5],[6]) Let μ be a fuzzy set in a *BCI*-algebra X. Then μ is called a *fuzzy dot subalgebra* (also called fuzzy H-algebra [6]) of X, if it satisfies:

$$\mu(xy) \ge \mu(x)\mu(y)$$
, for all $x, y \in X$.

Definition 3.2. Let μ be a fuzzy set in a *BCI*-algebra X. Then μ is called a *fuzzy dot ideal* of X, if it satisfies: (FD-1) $\mu(0) \ge \mu(x)$,

(FD-2)
$$\mu(x) \ge \mu(xy) \mu(y)$$
, for all $x, y \in X$.

Example 3.3. Let $X = \{0, a, b, c\}$ be a *BCI*-algebra with * defined by

*	0	а	b	С
0	0	a	b	С
а	а	0	С	b
b	b	С	0	а
С	С	b	а	0

[Example 3.2]. Define the fuzzy subset μ of X by $\mu(0) = 0.8$, $\mu(a) = \mu(b) = 0.25$ and $\mu(c) = 0.1$. Routine calculations give that μ is a fuzzy dot ideal of X.

Example 3.4. Let $X = \{0, a, b, c\}$ be a *BCK*-algebra with * defined by

*	0	а	b	С
0	0	0	0	0
а	а	0	0	а
b	b	а	0	b
С	С	С	С	0

[3; Example 3.2]. Define the fuzzy subset μ of X by $\mu(0) = 0.9$, $\mu(a) = \mu(b) = 0.5$ and $\mu(c) = 0.1$. Routine calculations give that μ is a fuzzy dot ideal of X. Also a fuzzy subset V of X, defined by v(0) = v(a) = 0.5, v(b) = 0.4 and v(c) = 0.3, is a fuzzy dot ideal of X.

Remark 3.5. Note that every fuzzy ideal of X is a fuzzy dot ideal of X, since

$$\mu(x) \ge \min \{\mu(xy), \mu(y)\} \ge \mu(xy)\mu(y)$$

but the converse is not true. In Example 3.4. we can see the fuzzy dot ideal V is not a fuzzy ideal of X, since

$$v(b) = 0.4 < \min\{v(ba), v(a)\}\$$

= $\min\{v(a), v(a)\} = 0.5$

Proposition 3.6. Let D be a nonempty subset of a BCK/BCI-algebra X and μ_D a fuzzy set in X defined by $\mu_D(x) = s$ if $x \in D$ and $\mu_D(x) = t$ otherwise, $s, t \in [0,1]$ with s > t. Then μ_D is fuzzy dot ideal of X, if D is ideal of X.

Proof. Suppose that D is an ideal of X. Since $0 \in D$, we have $\mu_D(0) = s \ge \mu_D(x)$, for all $x \in X$. Let $x,y \in X$. If $xy \in D$ and $y \in D$, then $x \in D$, so $\mu_D(x) = s \ge \mu_D(xy) \mu_D(y) = s^2$. If $xy \notin D$ or $y \notin D$, then $\mu_D(xy) \mu_D(y) = ts \le t \le \mu_D(x)$. If $xy \notin D$ and $y \notin D$, then $\mu_D(xy) \mu_D(y) = t^2 \le t \le \mu_D(x)$. Therefore $\mu_D(xy) \mu_D(y) = t^2 \le t \le \mu_D(x)$. Therefore $\mu_D(xy) \mu_D(y) = t^2 \le t \le \mu_D(x)$.

Proposition 3.7. Every fuzzy dot ideal μ of a BCK/BCI-algebra X with $\mu(0)=1$, is order reserving.

Proof. Let $x, y \in X$. If $x \leq y$, then xy = 0, so

$$\mu(x) \ge \mu(xy)\mu(y) = \mu(0)\mu(y) = \mu(y)$$
.

Proposition 3.8. Let μ be a fuzzy dot ideal of a BCK/BCI-algebra X, and $\mu(0)=1$. Then for all $x,y,z\in X$, it satisfies the condition (1) $\mu(xy)\geq \mu((xy)y)$, if and only if it satisfies

(2)
$$\mu((xz)(yz)) \ge \mu((xy)z)$$

Proof. Let μ be a fuzzy dot ideal of X satisfying (1). Since $((x(yz))z) = ((xz)(yz))z \le (xy)z$, by Proposition 3.7. we have $\mu((x(yz))z) \ge \mu((xy)z)$. It follows from (1) that.

$$\mu((xz)(yz)) = \mu((x(yz))z)$$

$$\geq \mu(((x(yz))z)z)$$

$$\geq \mu((xy)z)$$

Thus μ satisfies (2).

Conversely, replacing Z with y in (2), we obtain the condition (1). This completes the proof.

We denote $x(xy) = x^2y$ and inductively $x(...(xy)) = x^ny$, if x accuses x -time.

Proposition 3.9. Let μ be a fuzzy dot ideal of a BCK/BCI-algebra X, and $\mu(0)=1$. Then for all $x,y\in X$ we have

$$(i) \mu(xy)^n \ge (\mu(x))^2$$
 , where $n = 2k$, $k \in \square$.

(ii)
$$\mu(xy)^n \ge \mu((xy)x)\mu(x)$$
, where $n = 2k + 1$, $k \in \square$.

(iii)
$$\mu(\mathbf{x}^n) \ge \mu(xy)\mu(y)$$
, where $n = 2k + 1$, $k \in \square$.

Proof. Let $x, y \in X$, since

$$(xy)x = (xx)y = 0y$$

$$(xy)^{2}x = (xy)((xy)x) = (xy)(0y) \le x = 0$$

$$(xy)^{3}x = (xy)((xy)^{2}x) \le (xy)x = 0y$$

$$(xy)^{4}x = (xy)((xy)^{3}x) \le (xy)(0y) \le x = 0$$

$$\vdots$$

$$\left(xy\right)^{2k}x \le x,\tag{1}$$

$$\left(xy\right)^{2k+1}x \le 0y \ . \tag{2}$$

(i) By (1) and Proposition 3.7. we have
$$\mu((xy)^{2^k} x) \ge \mu(x), \text{ then}$$

$$\mu(xy)^{2^k} \ge \mu((xy)^{2^k} x) \mu(x)$$

$$\ge \mu(x) \mu(x)$$

$$= (\mu(x))^2$$

(ii) By (2) and Proposition 3.7. we have
$$\mu\Big(\big(xy\big)^{2k+1}x\Big) \ge \mu\Big(0y\Big)$$
, then
$$\mu\Big(\big(xy\big)^{2k+1}\Big) \ge \mu\Big(\big(xy\big)^{2k+1}x\Big)\mu\Big(x\Big)$$
$$\ge \mu\Big(0y\Big)\mu\Big(x\Big)$$
$$= \mu\Big(\big(xy\big)x\Big)\mu\Big(x\Big)$$

(iii) Since
$$x^{2k+1}(xy) \le y$$
, then by Proposition 3.7. we get $\mu(x^{2k+1}(xy)) \ge \mu(y)$, then
$$\mu(x^n) \ge \mu(x^n(xy))\mu(xy)$$

$$\ge \mu(y)\mu(xy)$$

$$= \mu(xy)\mu(y)$$

Theorem 3.10. Let X be a BCK/BCI-algebra, and let μ be a fuzzy set of X and $\mu(0) = 1$. Then μ is a fuzzy dot ideal of X if and only if it satisfies.

 $xy \le z$ implies $\mu(x) \ge \mu(y)\mu(z)$, for all $x, y, z \in X$.

Proof. Suppose that μ is a fuzzy dot ideal of X. Let $xy \le z$ for all $x, y, z \in X$. By Proposition 3.6. $\mu(xy) \ge \mu(z)$, so

$$\mu(x) \ge \mu(xy)\mu(y)$$

$$\ge \mu(z)\mu(y)$$

Conversely, since $x(xy) \le y$, then by hypothesis we get $\mu(x) \ge \mu(xy) \mu(y)$. Hence μ is a fuzzy dot ideal of X.

Theorem 3.11. Any fuzzy dot ideal μ of BCK-algebra X with $\mu(0) = 1$ must be a fuzzy dot subalgebra of X.

Proof. Since $xy \le x$, then by Proposition 3.7., $\mu(x) \le \mu(xy)$. Thus $\mu(xy) \ge \mu(x) > \mu(x) = \mu(x)$.

Theorem 3.12. Let $\{\mu_i\}$, where $i \in I$ be a family of fuzzy dot ideals of a BCK/BCI-algebra X, then so is $\bigcap_{i \in I} \mu_i$.

Proof. For all $x, y \in X$, we get

$$\bigcap_{i \in I} \mu_{i}(0) = \min_{i \in I} \{\mu_{i}(0)\}$$

$$\geq \min_{i \in I} \{\mu_{i}(x)\}$$

$$= \bigcap_{i \in I} \mu_{i}(x)$$

$$\bigcap_{i \in I} \mu_{i}(x) = \min_{i \in I} \{\mu_{i}(x)\}
\geq \min_{i \in I} \{\mu_{i}(xy)\mu_{i}(y)\}
\geq \left(\min_{i \in I} \{\mu_{i}(xy)\}\right) \left(\min_{i \in I} \{\mu_{i}(y)\}\right)
= \left(\bigcap_{i \in I} \mu_{i}(xy)\right) \left(\bigcap_{i \in I} \mu_{i}(y)\right)$$

Hence $\bigcap_{i\in I}\mu$ is a fuzzy dot ideal of X .

Remark 3.13. Note that a fuzzy subset μ of a *BCK/BCI*-algebra X is a fuzzy ideal of X if and only if a nonempty level subset μ_t is an ideal of X for every $t \in [0,1]$. But if μ is a fuzzy dot ideal of X, then μ_t may not to be an ideal of X, as seen in the following example.

Example 3.14. Let $X = \{0, a, b, c\}$ be a *BCK*-algebra as defined in Example 3.4. Consider the same fuzzy dot ideal V of X which is defined by v(0) = v(a) = 0.5, v(b) = 0.4 and v(c) = 0.3. We can see that $v_{0.5} = \{0, a\}$ and $ba = a \in v_{0.5}$, but $b \notin v_{0.5}$, then $v_{0.5}$ is not an ideal of X.

Theorem 3.15. Let μ be a fuzzy dot ideal of BCK/BCI-algebra X. Then $X_{\mu} = \{x \in X \mid \mu(x) = 1\}$ is either empty or ideal of X.

Proof. Suppose that μ is a fuzzy dot ideal of X, clearly $0 \in X_{\mu}$, now let $X_{\mu} \neq \phi$, and xy, $y \in X_{\mu}$. Then $\mu(xy) = 1 = \mu(y)$, so $\mu(x) \ge \mu(xy)\mu(y) = 1$ gives $x \in X_{\mu}$. Hence X_{μ} is an ideal of X.

Theorem 3.16. Let $g: X \to X'$ be a homomorphism of BCK/BCI-algebras. If V is a fuzzy dot ideal of X', then the preimage $g^{-1}(v)$ of V under g is a fuzzy dot ideal of X.

Proof. For any $x, y \in X$, we have

$$g^{-1}(v)(0) = v(g(0)) \ge v(g(x)) = g^{-1}(v)(x)$$

$$g^{-1}(v)(x) = v(g(x))$$

$$\ge v(g(x)(g(y)))v(g(y))$$

$$= v(g(xy))v(g(y))$$

$$= g^{-1}(v(xy))g^{-1}(v(y))$$

Hence $g^{-1}(v)$ is a fuzzy dot ideal of X.

Theorem 3.17. For any fuzzy subset σ of BCK/BCI-algebra X, assume that μ_{σ} be a fuzzy subset of $X \times X$ defined by $\mu_{\sigma}(x,y) = \sigma(x)\sigma(y)$ for all $x,y \in X$. Then σ is a fuzzy dot ideal of X if and only if μ_{σ} is a fuzzy dot ideal of $X \times X$.

Proof. Assume that σ is a fuzzy dot ideal of X. For all $x \in X$, we have

$$\mu_{\sigma}(0,0) = \sigma(0)\sigma(0) \ge \sigma(x)\sigma(x) = \mu_{\sigma}(x,x).$$

For any $x_1, x_2, y_1, y_2 \in X$, we have

$$\mu_{\sigma}((x_{1},x_{2})(y_{1},y_{2}))\mu_{\sigma}(y_{1},y_{2})$$

$$=\mu_{\sigma}(x_{1}y_{1},x_{2}y_{2})\mu_{\sigma}(y_{1},y_{2})$$

$$=(\sigma(x_{1}y_{1})\sigma(x_{2}y_{2}))(\sigma(y_{1})\sigma(y_{2}))$$

$$=(\sigma(x_{1}y_{1})\sigma(y_{1}))(\sigma(x_{2}y_{2})\sigma(y_{2}))$$

$$\leq \sigma(x_{1})\sigma(x_{2})$$

$$=\mu_{\sigma}(x_{1},x_{2}),$$

And so μ_{σ} is a fuzzy dot ideal of $X \times X$.

Conversely, suppose that μ_{σ} is a fuzzy dot ideal of $X \times X$ and let $x,y \in X$. Then

$$(\sigma(xy)\sigma(y))^{2} = (\sigma(xy)\sigma(y))(\sigma(xy)\sigma(y))$$

$$= (\sigma(xy)\sigma(xy))(\sigma(y)\sigma(y))$$

$$= \mu_{\sigma}(xy,xy)\mu_{\sigma}(y,y)$$

$$= (\mu_{\sigma}(x,x)\mu_{\sigma}(y,y))\mu_{\sigma}(y,y)$$

$$\leq \mu_{\sigma}(x,x)$$

$$= \sigma(x)\sigma(x) = (\sigma(x))^{2}$$

And so $\sigma(x) \ge \sigma(xy)\sigma(y)$, that is σ a fuzzy dot ideal of X.

Theorem 3.18. Let X be a BCK/BCI-algebra, and let μ be a fuzzy set of $X \times X$ and σ be a fuzzy subset of X defined by $\sigma(x) = \mu(x,0)$, for all $x \in X$. If μ is a fuzzy dot ideal of $X \times X$, then σ is a fuzzy dot ideal of X.

Proof. For all $x \in X$ we have

$$\sigma(0) = \mu(0,0) \ge \mu(x,0) = \sigma(x)$$
. For all $x, y \in X$

$$\sigma(xy)\sigma(y) = \mu(xy,0)\mu(y,0)$$

$$= \mu(xy,00)\mu(y,0)$$

$$= \mu((x,0)(y,0))\mu(y,0)$$

$$\leq \mu(x,0)$$

$$= \sigma(x)$$

Thus σ is a fuzzy dot ideal of X .

Theorem 3.19. Let X, X' be BCK/BCI-algebras, and μ a fuzzy set of $X \times X'$ satisfying the inequalities $\mu(x,0) \ge \mu(x,x')$ and $\mu((x,0)(y,0)) \ge \mu((x,x')(y,y'))$ for all x, $y \in X$ and $x',y' \in X'$. Let σ be a fuzzy subset of X defined as above. If σ is a fuzzy dot ideal of X, then μ is a fuzzy dot ideal of $X \times X'$.

Proof. For all $(x,y) \in X \times X'$, we have

$$\mu(0,0) = \sigma(0) \ge \sigma(x) = \mu(x,0) \ge \mu(x,y),$$

and for all $(x, x'), (y, y') \in X \times X'$

$$\mu(x,x') = \sigma(x) \ge \sigma(xy)\sigma(y)$$

$$= \mu(xy,0)\mu(y,0)$$

$$= \mu(xy,00)\mu(y,0)$$

$$= \mu((x,0)(y,0))\mu(y,0)$$

$$\ge \mu((x,x')(y,y'))\mu(y,y')$$

Thus μ is a fuzzy dot ideal of $X \times X'$.

Theorem 3.20. Let μ and V be fuzzy dot ideals of a BCK/BCI-algebras X and X' respectively. Then the cross product $\mu \times V$ of μ and V defined by $\mu \times v(x,y) = \mu(x)v(y)$, for all $(x,y) \in X \times X'$ is a fuzzy dot ideal of $X \times X'$.

Proof. For all $(x, y) \in X \times X'$ we have

$$\mu \times \nu(0,0) = \mu(0)\nu(0) \ge \mu(x)\nu(y) = \mu \times \nu(x,y)$$

Now, for any $(x, x'), (y, y') \in X \times X'$, we have

$$\mu \times \nu(x, x') = \mu(x)\nu(x')$$

$$\geq (\mu(xy)\mu(y))(\nu(x'y')\nu(y'))$$

$$= (\mu(xy)\nu(x'y'))(\mu(y)\nu(y'))$$

$$= (\mu \times \nu(xy, x'y'))(\mu \times \nu(y, y'))$$

$$= (\mu \times \nu(x, x')(y, y'))(\mu \times \nu(y, y'))$$

Thus $\mu \times V$ is a fuzzy dot ideal of $X \times X'$.

Theorem 3.21. Let μ and V be fuzzy dot ideals of BCK/BCI-algebras X and X' respectively. If the cross product $\mu \times V$ is a fuzzy dot ideal of $X \times X'$, then μ or V must be a fuzzy dot ideal.

Proof. Let $\mu \times V$ be a fuzzy dot ideal of $X \times X'$. We claim that μ or V satisfies (FD-1). Suppose $\mu(0) < \mu(x_0)$ and $\nu(0) < \nu(x_0')$, for some $x_0 \in X$ and $x_0' \in X'$. Then

$$\mu \times \nu(0,0) = \mu(0)\nu(0) < \mu(x_0)\nu(x_0') = \mu \times \nu(x_0,x_0')$$

which is a contradiction. Therefore (FD-1) holds for one μ or ν . Suppose that (FD-2) is false. Then there are $x_0, y_0 \in X$ and $x_0', y_0' \in X'$ such that

$$\mu \times \nu(x_{0}, x_{0}') = \mu(x_{0})\nu(x_{0}')$$

$$< (\mu(x_{0}y_{0})\mu(y_{0}))(\nu(x_{0}'y_{0}')\nu(y_{0}'))$$

$$= (\mu(x_{0}y_{0})\nu(x_{0}'y_{0}'))(\mu(y_{0})\nu(y_{0}'))$$

$$= \mu \times \nu(x_{0}y_{0}, x_{0}'y_{0}')\mu \times \nu(y_{0}, y_{0}')$$

$$= \mu \times \nu((x_{0}, x_{0}')(y_{0}, y_{0}'))\mu \times \nu(y_{0}, y_{0}')$$

Which is impossible. Hence (FD-2) is also valid for one $\,\mu$ or

 ${\mathcal V}$. Consequently, ${\mathcal \mu}$ or ${\mathcal V}$ must be a fuzzy dot ideal.

REFERENCES

- 1) Ahmad, B. Fuzzy BCI-algebras, The journal of fuzzy mathematics, 1 (2) (1993), 445-452.
- 2) Imai Y. and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 26-29.
- 3) Iséki, K. An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 351-366.
- 4) Jun, Y. B. Closed fuzzy ideals in BCI-algebras, Math. Japon., 38 (1) (1993), 199-202.
- 5) Jun Y. B. and S. M. Hong, Fuzzy subalgebras of BCK/BCI-algebras redefined, Math. Japon., 4 (2001), 769-775.
- 6) Khalid H. M. and B. Ahmed, Fuzzy H-relations, and fuzzy H-algebras, Punjab University Journal of Mathematics, 34 (2001), 115-122.
- 7) Liu, Y. L. J. Meng, Fuzzy ideals in BCI- algebras, Fuzzy sets and Systems, 123 (2001), 227-237.
- 8) Meng, J., Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243-248.
- 9) Meng J. and Y. B. Jun, BCK algebras, Kyung Moon Sa Co., Korea, (1994).
- 10)Xi, O. G. Fuzzy BCK algebras, Math. Japon., 36 (5) (1991), 935-942.
- 11) Zadeh, L. A. Fuzzy sets, Information and control, 8 (1965), 338-353.
