

Research Article

FUZZY DOT IDEAL OF *BCK/BCI-***ALGEBRAS**

***Najati, S. A.**

Department of Mathematics and Statistics, Taif University, Taif-AL-Haweiah, KSA

Received 17th February 2021; **Accepted** 13th March 2021; **Published online** 30th April 2021

Abstract

The concept of fuzzy dot subalgebra of *BCK/BCI*-algebras was introduced by Jun and Hong [5]. In this paper, we introduce the concept of fuzzy dot ideal, and study its some characterizations and properties. Also, we give a relation between a fuzzy dot ideal in theorems*.*

Keywords: *BCK/BCI*-algebras, fuzzy dot subalgebra, fuzzy dot ideal.

INTRODUCTION

The notion of *BCK*-algebra was introduced by Imai and Iseki in 1966 [2]. In the same year Iseki [3] introduced the notion of a *BCI*-algebra which is a generalization of a *BCK*-algebra. After the introduction of the concept of fuzzy sets by Zadeh [11], several researches worked on the generalization of the notion of fuzzy sets. Jun and Hong [5] introduced a fuzzy dot subalgebra in *BCK/BCI*-algebras and investigated some properties. In this paper, we introduce the notion of fuzzy dot ideal and give some fundamental properties and characterizations of fuzzy dot ideal of *BCK/BCI*-algebra.

PRELIMINARIES

In this section, some basic definitions and properties of *BCK/BCI*-algebras and fuzzy sets in *BCK/BCI*-algebras are given. By a *BCI*-algebra *X*, we mean an algebra $(X, *0)$ of type $(2,0)$ satisfying the following conditions:

 $BCI - 1$ $((xy)(xz))(zy) = 0,$ $BCI - 2 (x (xy))y = 0,$ $BCI - 3$ $xx = 0$, $BCI - 4$ $xy = 0$ and $yx = 0 \Rightarrow x = y$,

where, $xy = x * y$, and $xy = 0$ if and only if $x \le y$ for all $x, y, z \in X$.

A *BCI*-algebra *X* satisfying $0 \leq x$, for all $x \in X$ is called a *BCK-algebra*. In a *BCK/BCI*-algebra *X*, the following properties hold for all $x, y, z \in X$.

 $P-1 \quad x \; 0 = x$. P-2 $(xy)z = (xz)y$. P-3 $x \leq y$ implies that $xz \leq yz$ and $zy \leq zx$. P-4 $(xz)(yz) \leq xy$ [5].

If *X* is a *BCK*-algebra, then the inequality $xy \leq x$ holds for all $x, y \in X$

Next, we review some fuzzy concepts. A fuzzy set of *X* is a function $\mu: X \to [0,1]$. The set $\mu_t = \{x \in X | \mu(x) \ge t\}$, where $t \in [0,1]$ is called the level subset of μ .

A nonempty subset *I* of a *BCK/BCI*-algebra *X* is called an *ideal* of X , if it satisfies : $(I-1)$ $0 \in I$, $(1-2)$ *xy* $\in I$ and $y \in I$ imply that $x \in I$, for all $x, y \in X$.

A fuzzy set μ of a *BCK/BCI*-algebra X is said to be a *fuzzy ideal* ([1],[4]) of X , if it satisfies: (FI-1) $\mu(0) \ge \mu(x)$,

(FI-2) $\mu(x) \ge \min\{\mu(xy), \mu(y)\}\$, for all $x, y \in X$.

FUZZY DOT IDEAL

Definition 3.1. ([5],[6]) Let μ be a fuzzy set in a *BCI*-algebra X . Then μ is called a *fuzzy dot subalgebra* (also called fuzzy H-algebra [6]) of \overline{X} , if it satisfies:

 $\mu(xy) \ge \mu(x) \mu(y)$, for all $x, y \in X$.

Definition 3.2. Let μ be a fuzzy set in a *BCI*-algebra *X*. Then μ is called a *fuzzy dot ideal* of *X*, if it satisfies: $(FD-1)$ $\mu(0) \geq \mu(x)$,

(FD-2) $\mu(x) \ge \mu(xy) \mu(y)$, for all $x, y \in X$.

Example 3.3. Let $X = \{0, a, b, c\}$ be a *BCI*-algebra with * defined by

[Example 3.2]. Define the fuzzy subset μ of *X* by $\mu(0) = 0.8$, $\mu(a) = \mu(b) = 0.25$ and $\mu(c) = 0.1$. Routine calculations give that μ is a fuzzy dot ideal of *X*.

Example 3.4. Let $X = \{0, a, b, c\}$ be a *BCK*-algebra with * defined by

[3; Example 3.2]. Define the fuzzy subset μ of *X* by $\mu(0) = 0.9$, $\mu(a) = \mu(b) = 0.5$ and $\mu(c) = 0.1$. Routine calculations give that μ is a fuzzy dot ideal of *X*. Also a fuzzy subset V of X, defined by $\nu(0) = \nu(a) = 0.5$, $\nu(b) = 0.4$ and $\nu(c) = 0.3$, is a fuzzy dot ideal of *X*.

Remark 3.5. Note that every fuzzy ideal of X is a fuzzy dot ideal of X , since

$$
\mu(x) \ge \min\{\mu(xy), \mu(y)\} \ge \mu(xy)\mu(y)
$$

but the converse is not true. In Example 3.4. we can see the fuzzy dot ideal V is not a fuzzy ideal of X , since

$$
v(b) = 0.4 < \min\{v(ba), v(a)\}
$$

= $\min\{v(a), v(a)\} = 0.5$

Proposition 3.6. Let D be a nonempty subset of a BCK/BCI-algebra X and μ _D a fuzzy set in X defined by μ _D (x) =S if $x \in D$ and $\mu_D(x) = t$ otherwise, $s, t \in [0,1]$ with $s > t$. Then μ_D is fuzzy dot ideal of X *, if* D is ideal of X .

Proof. Suppose that D is an ideal of X. Since $0 \in D$, we have $\mu_D(0) = s \ge \mu_D(x)$, for all $x \in X$. Let $x, y \in X$. If $xy \in D$ and $y \in D$, then $x \in D$, so $\mu_D(x)=s \ge \mu_D(xy)\mu_D(y)=s^2$. If $xy \notin D$ or $y \notin D$, then $\mu_D(xy)\mu_D(y) =$ ts $\leq t \leq \mu_D(x)$. If $xy \notin D$ and $y \notin D$, then $\mu_D(xy)\mu_D(y) = t^2 \leq t \leq \mu_D(x)$. Therefore μ_D is a fuzzy dot ideal of *X* .

Proposition 3.7. *Every fuzzy dot ideal* μ of a BCK/BCI-algebra X with $\mu(0) = 1$, is order reserving.

Proof. Let $x, y \in X$. If $x \leq y$, then $xy = 0$, so

$$
\mu(x) \ge \mu(xy) \mu(y) = \mu(0) \mu(y) = \mu(y).
$$

Proposition 3.8. Let μ be a fuzzy dot ideal of a BCK/BCI-algebra X, and $\mu(0) = 1$. Then for all $x, y, z \in X$, it *satisfies the condition (1)* $\mu(xy) \ge \mu((xy) y)$, *if and only if it satisfies*

$$
(2) \mu((xz)(yz)) \ge \mu((xy)z)
$$

Proof. Let μ be a fuzzy dot ideal of X satisfying (1). Since $((x (yz))z)z = ((xz)(yz))z \leq (xy)z$, by Proposition 3.7. we have $\mu((x (yz))z)z \ge \mu((xy)z)$. It follows from (1) that.

$$
\mu((xz)(yz)) = \mu((x(yz))z)
$$

\n
$$
\ge \mu(((x(yz))z)z)
$$

\n
$$
\ge \mu((xy)z)
$$

Thus μ satisfies (2).

Conversely, replacing Z with γ in (2), we obtain the condition (1). This completes the proof. We denote $x (xy) = x^2y$ and inductively $x (...(xy)) = x^n y$, if *x* accuses *n* -time.

Proposition 3.9. Let μ be a fuzzy dot ideal of a BCK/BCI-algebra X, and $\mu(0) = 1$. Then for all $x, y \in X$ we have

$$
(i) \ \mu(xy)^n \ge (\mu(x))^2 \ , \text{ where } n = 2k \ , \ k \in \square .
$$
\n
$$
(ii) \ \mu(xy)^n \ge \mu((xy)x)\mu(x) \ , \text{ where } n = 2k + 1 \ , \ k \in \square .
$$
\n
$$
(iii) \ \mu(x^n) \ge \mu(xy)\mu(y) \ , \text{ where } n = 2k + 1 \ , \ k \in \square .
$$

Proof. Let $x, y \in X$, since

$$
(xy)x = (xx)y = 0y
$$

\n
$$
(xy)^{2}x = (xy)((xy)x) = (xy)(0y) \le x0 = x
$$

\n
$$
(xy)^{3}x = (xy)((xy)^{2}x) \le (xy)x = 0y
$$

\n
$$
(xy)^{4}x = (xy)((xy)^{3}x) \le (xy)(0y) \le x0 = x
$$

\n
$$
\vdots
$$

$$
(xy)^{2k} x \le x,
$$

\n
$$
(xy)^{2k+1} x \le 0y.
$$

\n(1)

 (i) By (1) and Proposition 3.7. we have $\mu((xy)^{2k} x) \geq \mu(x)$, then $\mu(xy)^{2k} \geq \mu((xy)^{2k} x) \mu(x)$ $\geq \mu(x)\mu(x)$ $=\left(\mu(x)\right)^2$

(*ii*) By (2) and Proposition 3.7. we have $\mu((xy)^{2k+1}x) \ge \mu(0y)$, then $\mu((xy)^{2k+1}) \ge \mu((xy)^{2k+1}x)\mu(x)$ $\geq \mu(0y)\mu(x)$ $=\mu((xy)x)\mu(x)$

iii \int Since $x^{2k+1}(xy) \leq y$, then by Proposition 3.7. we get $\mu(x^{2k+1}(xy)) \geq \mu(y)$, then $\mu(x^n) \ge \mu(x^n (xy)) \mu(xy)$ $\geq \mu(y) \mu(xy)$ $=\mu(xy)\mu(y)$

Theorem 3.10. Let X be a BCK/BCI-algebra, and let μ be a fuzzy set of X and $\mu(0) = 1$. Then μ is a fuzzy dot ideal *of X if and only if it satisfies.*

$$
xy \leq z
$$
 implies $\mu(x) \geq \mu(y) \mu(z)$, for all $x, y, z \in X$.

Proof. Suppose that μ is a fuzzy dot ideal of X. Let $xy \leq z$ for all $x, y, z \in X$. By Proposition 3.6. $\mu(xy) \geq \mu(z)$, so

$$
\mu(x) \ge \mu(xy) \mu(y)
$$

$$
\ge \mu(z) \mu(y)
$$

Conversely, since $x(xy) \le y$, then by hypothesis we get $\mu(x) \ge \mu(xy) \mu(y)$. Hence μ is a fuzzy dot ideal of X.

Theorem 3.11. *Any fuzzy dot ideal* μ *of BCK-algebra X with* μ (0) = 1 *must be a fuzzy dot subalgebra of X*.

Proof. Since $xy \leq x$, then by Proposition 3.7., $\mu(x) \leq \mu(xy)$. Thus $\mu(xy) \geq \mu(x) > \mu(x) \mu(y)$.

Theorem 3.12. Let $\{\mu_i\}$, where $i \in I$ be a family of fuzzy dot ideals of a BCK/BCI-algebra X , then so is $\bigcap_{i \in I} \mu_i$.

Proof. For all $x, y \in X$, we get

$$
\bigcap_{i \in I} \mu_i(0) = \min_{i \in I} \{ \mu_i(0) \}
$$

$$
\geq \min_{i \in I} \{ \mu_i(x) \}
$$

$$
= \bigcap_{i \in I} \mu_i(x)
$$

$$
\bigcap_{i \in I} \mu_{i} (x) = \min_{i \in I} \{ \mu_{i} (x) \}
$$
\n
$$
\geq \min_{i \in I} \{ \mu_{i} (xy) \mu_{i} (y) \}
$$
\n
$$
\geq \left(\min_{i \in I} \{ \mu_{i} (xy) \} \right) \left(\min_{i \in I} \{ \mu_{i} (y) \} \right)
$$
\n
$$
= \left(\bigcap_{i \in I} \mu_{i} (xy) \right) \left(\bigcap_{i \in I} \mu_{i} (y) \right)
$$

Hence $\bigcap_{i \in I} \mu$ is a fuzzy dot ideal of X .

Remark 3.13. Note that a fuzzy subset μ of a *BCK/BCI*-algebra X is a fuzzy ideal of X if and only if a nonempty level subset μ_t is an ideal of X for every $t \in [0,1]$. But if μ is a fuzzy dot ideal of X, then μ_t may not to be an ideal of X, as seen in the following example*.*

Example 3.14. Let $X = \{0, a, b, c\}$ be a *BCK*-algebra as defined in Example 3.4. Consider the same fuzzy dot ideal V of \overline{X} which is defined by $v(0) = v(a) = 0.5$, $v(b) = 0.4$ and $v(c) = 0.3$. We can see that $v_{0.5} = \{0, a\}$ and $ba = a \in v_{0.5}$, but $b \notin V_{0.5}$, then $V_{0.5}$ is not an ideal of X.

Theorem 3.15. Let μ be a fuzzy dot ideal of BCK/BCI-algebra X. Then $X_u = \{x \in X | \mu(x) = 1\}$ is either empty or ideal of X.

Proof. Suppose that μ is a fuzzy dot ideal of *X*, clearly $0 \in X_{\mu}$, now let $X_{\mu} \neq \phi$, and xy , $y \in X_{\mu}$. Then $\mu(xy) = 1 = \mu(y)$, so $\mu(x) \ge \mu(xy) \mu(y) = 1$ gives $x \in X_{\mu}$. Hence X_{μ} is an ideal of X.

Theorem 3.16. Let $g: X \to X'$ be a homomorphism of BCK/BCI-algebras. If V is a fuzzy dot ideal of X', then the *preimage* $g^{-1}(v)$ of V under g *is a fuzzy dot ideal of* X.

Proof. For any $x, y \in X$, we have

$$
g^{-1}(v)(0) = v(g(0)) \ge v(g(x)) = g^{-1}(v)(x)
$$

$$
g^{-1}(v)(x) = v(g(x))
$$

$$
\ge v(g(x)(g(y)))v(g(y))
$$

$$
= v(g(xy))v(g(y))
$$

$$
= g^{-1}(v(xy))g^{-1}(v(y))
$$

Hence $g^{-1}(v)$ is a fuzzy dot ideal of X.

Theorem 3.17. For any fuzzy subset σ of BCK/BCI-algebra X, assume that μ_{σ} be a fuzzy subset of $X \times X$ defined by $\mu_{\sigma}(x, y) = \sigma(x) \sigma(y)$ for all $x, y \in X$. Then σ is a fuzzy dot ideal of X if and only if μ_{σ} is a fuzzy dot ideal of $X \times X$.

Proof. Assume that σ is a fuzzy dot ideal *of X* . For all $x \in X$, we have

$$
\mu_{\sigma}(0,0) = \sigma(0)\sigma(0) \ge \sigma(x)\sigma(x) = \mu_{\sigma}(x,x).
$$

For any $x_1, x_2, y_1, y_2 \in X$, we have

$$
\mu_{\sigma}\left((x_1,x_2)(y_1,y_2)\right)\mu_{\sigma}\left(y_1,y_2\right) \n= \mu_{\sigma}\left(x_1y_1,x_2y_2\right)\mu_{\sigma}\left(y_1,y_2\right) \n= \left(\sigma\left(x_1y_1\right)\sigma\left(x_2y_2\right)\right)\left(\sigma\left(y_1\right)\sigma\left(y_2\right)\right) \n= \left(\sigma\left(x_1y_1\right)\sigma\left(y_1\right)\right)\left(\sigma\left(x_2y_2\right)\sigma\left(y_2\right)\right) \n\leq \sigma\left(x_1\right)\sigma\left(x_2\right) \n= \mu_{\sigma}\left(x_1,x_2\right),
$$

And so μ_{σ} is a fuzzy dot ideal of $X \times X$.

Conversely, suppose that μ_{τ} is a fuzzy dot ideal of $X \times X$ and let $x, y \in X$. Then

$$
(\sigma(xy)\sigma(y))^2 = (\sigma(xy)\sigma(y))(\sigma(xy)\sigma(y))
$$

\n
$$
= (\sigma(xy)\sigma(xy))(\sigma(y)\sigma(y))
$$

\n
$$
= \mu_\sigma(xy, xy)\mu_\sigma(y, y)
$$

\n
$$
= (\mu_\sigma(x, x)\mu_\sigma(y, y))\mu_\sigma(y, y)
$$

\n
$$
\leq \mu_\sigma(x, x)
$$

\n
$$
= \sigma(x)\sigma(x) = (\sigma(x))^2
$$

And so $\sigma(x) \ge \sigma(xy) \sigma(y)$, that is σ a fuzzy dot ideal of *X*.

Theorem 3.18. Let X be a BCK/BCI-algebra, and let μ be a fuzzy set of $X \times X$ and σ be a fuzzy subset of X *defined by* $\sigma(x) = \mu(x,0)$, for all $x \in X$. If μ is a fuzzy dot ideal of $X \times X$, then σ is a fuzzy dot ideal of X .

Proof. For all $x \in X$ we have

$$
\sigma(0) = \mu(0,0) \ge \mu(x,0) = \sigma(x) . \text{ For all } x, y \in X
$$

$$
\sigma(xy)\sigma(y) = \mu(xy,0)\mu(y,0)
$$

$$
= \mu(xy,00)\mu(y,0)
$$

$$
= \mu((x,0)(y,0))\mu(y,0)
$$

$$
\le \mu(x,0)
$$

$$
= \sigma(x)
$$

Thus σ is a fuzzy dot ideal of X .

Theorem 3.19. *Let* X, X' *be BCK/BCI-algebras, and* μ *a fuzzy set of* $X \times X'$ *satisfying the inequalities* $\mu(x,0) \geq \mu(x,x')$ and $\mu((x,0)(y,0)) \geq \mu((x,x')(y,y'))$ for all $x,y \in X$ and $x',y' \in X'$. Let σ be a fuzzy subset *of* X *defined as above. If* σ is a *fuzzy dot ideal of* X , then μ is a *fuzzy dot ideal of* $X \times X'$.

Proof. For all $(x, y) \in X \times X'$, we have

$$
\mu(0,0) = \sigma(0) \ge \sigma(x) = \mu(x,0) \ge \mu(x,y)
$$

and for all $(x, x'), (y, y') \in X \times X'$

$$
\mu(x, x') = \sigma(x) \ge \sigma(xy) \sigma(y)
$$

= $\mu(xy, 0) \mu(y, 0)$
= $\mu(xy, 00) \mu(y, 0)$
= $\mu((x, 0)(y, 0)) \mu(y, 0)$
 $\ge \mu((x, x')(y, y')) \mu(y, y')$

Thus μ is a fuzzy dot ideal of $X \times X'$.

Theorem 3.20. Let μ and V be fuzzy dot ideals of a BCK/BCI-algebras X and X' respectively. Then the cross product $\mu \times \nu$ of μ and ν defined by $\mu \times \nu(x, y) = \mu(x) \nu(y)$, for all $(x, y) \in X \times X'$ is a fuzzy dot ideal of $X \times X'$.

Proof. For all $(x, y) \in X \times X'$ we have

$$
\mu \times \nu(0,0) = \mu(0)\nu(0) \ge \mu(x)\nu(y) = \mu \times \nu(x,y)
$$

Now, for any $(x, x'), (y, y') \in X \times X'$, we have

$$
\mu \times \nu(x, x') = \mu(x) \nu(x')
$$

\n
$$
\geq (\mu(xy) \mu(y)) (\nu(xy') \nu(y'))
$$

\n
$$
= (\mu(xy) \nu(xy')) (\mu(y) \nu(y'))
$$

\n
$$
= (\mu \times \nu(xy, x'y')) (\mu \times \nu(y, y'))
$$

\n
$$
= (\mu \times \nu(x, x')(y, y')) (\mu \times \nu(y, y'))
$$

Thus $\mu \times \nu$ is a fuzzy dot ideal of $X \times X'$.

Theorem 3.21. Let μ and V be fuzzy dot ideals of BCK/BCI -algebras X and X' respectively. If the cross product $\mu \times \nu$ *is a fuzzy dot ideal of* $X \times X'$, *then* μ *or* ν *must be a fuzzy dot ideal*.

Proof. Let $\mu \times \nu$ be a fuzzy dot ideal of $X \times X'$. We claim that μ or ν satisfies (FD-1). Suppose $\mu(0) < \mu(x_0)$ and $\nu(0) < \nu(x_0)$, for some $x_0 \in X$ and $x_0 \in X'$. Then

$$
\mu \times \nu(0,0) = \mu(0)\nu(0) < \mu(x_0)\nu(x_0') = \mu \times \nu(x_0, x_0')
$$

which is a contradiction. Therefore (FD-1) holds for one μ or ν . Suppose that (FD-2) is false. Then there are $x_0, y_0 \in X$ and $x'_0, y'_0 \in X'$ such that

$$
\mu \times \nu(x_0, x'_0) = \mu(x_0)\nu(x'_0)
$$

$$
< (\mu(x_0y_0)\mu(y_0))(\nu(x'_0y'_0)\nu(y'_0))
$$

$$
= (\mu(x_0y_0)\nu(x'_0y'_0))(\mu(y_0)\nu(y'_0))
$$

$$
= \mu \times \nu(x_0y_0, x'_0y'_0)\mu \times \nu(y_0, y'_0)
$$

$$
= \mu \times \nu((x_0, x'_0)(y_0, y'_0))\mu \times \nu(y_0, y'_0)
$$

Which is impossible. Hence (FD-2) is also valid for one μ or

 V . Consequently, μ or V must be a fuzzy dot ideal.

REFERENCES

- 1) Ahmad, B. Fuzzy BCI-algebras, The journal of fuzzy mathematics, 1 (2) (1993), 445-452.
- 2) Imai Y. and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 26-29.
- 3) Iséki, K. An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 351-366.
- 4) Jun, Y. B. Closed fuzzy ideals in BCI-algebras, Math. Japon., 38 (1) (1993), 199-202.
- 5) Jun Y. B. and S. M. Hong, Fuzzy subalgebras of BCK/BCI-algebras redefined, Math. Japon., 4 (2001), 769-775.
- 6) Khalid H. M. and B. Ahmed, Fuzzy H-relations, and fuzzy H-algebras, Punjab University Journal of Mathematics, 34 (2001), 115-122.
- 7) Liu, Y. L. ,J. Meng, Fuzzy ideals in BCI- algebras, Fuzzy sets and Systems, 123 (2001), 227-237.
- 8) Meng, J., Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243-248.
- 9) Meng J. and Y. B. Jun, *BCK* algebras, Kyung Moon Sa Co., Korea, (1994).
- 10)Xi, O. G. Fuzzy *BCK* algebras, Math. Japon., 36 (5) (1991), 935-942.
- 11)Zadeh, L. A. Fuzzy sets, Information and control, 8 (1965), 338-353.
