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Abstract 
 

Very few functions can be integrated analytically. For the large class of those ones whose integral cannot be found such a way, only numerical 
methods are helpful. They are many and all of them generate errors. The goal of this paper is to find out those ones which minimize these errors. 
The most encountered numerical methods the Newton-Cotes, Tchebyshev and Gauss. This study indicates that the method of Gauss gives better 
results, follows by the method of Tchebyshev. The method of Newton-Cotes is at the third position. Moreover, for more accurate results the 
integrating function should be replace by an algebraic function of order not exceeding 2. 
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1. Position of the problem 
 
The fast and continuous development of sciences has enabled researchers to elaborate more complicated models to describe as 
closer as possible natural phenomena. They usually lead to computations of finite integrals of the form: 
 

I = ∫ �(�)��
�

�
, A≤x≤B.         (1) 

 
Very few integrals of (1) are analytically treated. Many of them can only be computed through numerical methods, (Melentev, 
1962, Patel, 1994). Interval (A,B) is the domain of integration, f(x) – the integrating function, I– the integral. The goal of this 
study is to develop and compare between themselves some methods which should enable us to easier compute integral (1) when it 
cannot be done analytically. 
 

For this purpose, I is expressed as a linear combination of the integrating function calculated at some special nods of integration, 
xk, with A≤xk≤B, 1≤k≤n: 
 
I = C1y1 + C2y2 + … + Cnyn ,          (2) 
 
Ck are the constants to be determined, yk = f(xk),  Formula (2) is elaborated for the domain of integration -1≤x≤1. For other 
domains, a new variable u to bring back to the previous domain is introduced as follows: 
 

u = 
���

�
x + 

���

�
, -1≤u≤1.         (3) 

 
To easy the finding of (1), put y = f(x) as an unlimited algebraic expression of the form: 
 
y = f(x) = a0 + a1x + a2x

2 + a3x
3 + … + anx

n + …        (4) 
 
Clear that (4) should be always limited to a finite number of terms, whence the errors in the results. To elaborate different 
numerical methods of integration, relations (2), (3) and (4) are considered. This article is not to develop a lot of formulas in each 
numerical method, but to show the readers how to find the nods of integration xk and the coefficients Ck in (2). 
 

2. Fundamental basis of the numerical methods of integration 
 

In (1), A=-1, B=1, I and f(x) expressed respectively by (2) and (4). Thus, the classical method of integration gives: 

 
I = ∫ �(�)��

�

��
 = ∫ (�� + ���� + ���� + ⋯ + ���� + ⋯ )��

�

��
= (a0x + 

��

�
x2 + 

��

�
x3 + 

��

�
x4 + …)���

�  = 2a0 + 
�

�
a2 + 

�

�
a4 + … + 

�

����
a2m + … , m = 0, 1, 2, ….     (5) 
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The numerators of all the coefficients of the last expression of (5) are 2 and their denominators are in arithmetic progression with 1 
the first term and 2 the ratio. The general term of this progression is 2m+1. Reorganizing all the terms, we come to the expression: 
 
C1y1 + C2y2 + … + Cnyn = C1(a0 + a1x1 + a2��

� + a3��
� + … + an��

� + …   ) + 
+ C2(a0 + a1x2 + a2��

� + a3��
� + … + an��

� + …   ) + 
+ C3(a0 + a1x3 + a2��

� + a3��
� + … + an��

� + …   ) + 
+ ………………………………………………… + 
+ Cn(a0 + a1xn + a2��

� + a3��
� + … + an��

� + …   ) + 
+ ………………………………………………..=         (6) 
a0(C1 + C2 + C3 + ….. + Cn) + 
+ a1(C1x1 + C2x2 + C3x3 + ….. + Cnxn) + 
+ a2(C1 ��

� + C2��
� + C3��

� + ….. + Cn��
�) + 

+ a3(C1 ��
� + C2��

� + C3��
� + ….. + Cn��

�) + 
+ ……………………………………….. + 
+ an(C1 ��

� + C2��
� + C3��

� + ….. + Cn��
�) + 

+ ……………………………………… = 

= 2a0 + 
�

�
a2 + 

�

�
a4 + 

�

�
a6 + … 

 
Equations (6) must be verified for any ak. For this condition to be filled, the next systems of equations must be verified: 
The first system: 
 
C1 + C2 + C3 + ….. + Cn = 2, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
,  (7) 

………………………………………… 

C1 ��
�� + C2��

�� + C3��
�� + ….. + Cn��

�� = 
�

����
. 

 
The second one: 
 
C1x1 + C2x2 + C3x3 + ….. + Cnxn = 0, 
C1 ��

� + C2��
� + C3��

� + ….. + Cn��
� = 0, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 0,  (8) 
…………………………………………, 
C1 ��

���� + C2��
���� + C3��

���� + ….. + Cn��
���� = 0, 

 
It is obvious that for (7) and (8) to be verified, the nods xk and coefficients Ck must fulfill the conditions: 
 
xk = -xn-k,   (9)     Ck = Cn-k.    (10) 
 
Because of the limitation of the number of terms in (4), each equation of (7) should contain an error . Thus, these equations 
should be rewritten as follows: 
 
C1 + C2 + C3 + ….. + Cn = 2 + 0, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
 + 2, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
 + 4, 

C1 ��
� + C2��

� + C3��
� + ….. + Cn��

� = 
�

�
 + 6,  (11) 

………………………………………… 

C1 ��
�� + C2��

�� + C3��
�� + ….. + Cn��

�� = 
�

����
 + 2m, 

 
In the theory of numerical integration, the error is usually expressed by a formula of the form (Melentev, 1962, Patel, 1994): 
 
 = kf(s)(),   (12) 
 
k being a constant and  - a number such that -1< x < 1. (12) does not always give good estimations of the error generated as the 
exact position of  inside the domain of integration is unknown. To fix our mind, consider that two different numerical methods 
have led to a same error term of the form: 
 

 = 
�

����
f(5)(),  -1< x < 1 (13) 
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where the integrating function is: 
 

f(x) = 
�

���
.   (14) 

 
The fifth order derivative of (14) is: 
 

f(5) (x) = - 
�!

(���)�.       (15) 

 
If  is near x = -1, then x+2 will be closer to 1 and we have: 
 

 ≈ - 
�!

���� .  �� ≈ - 
�

�
.         (16) 

 
If  is closer to x = 1 and proceeding by analogy, we have: 
 

 ≈ - 
�!

���� .  �� ≈ - 
�

����
.         (17) 

 
Comparing (16) and (17) leads to the conclusion that the first is about 103 times larger the second. When the integrating function is 
not given analytically, this error estimation becomes more complicated and probably impossible, particularly when f(x) is given 
graphically. 
 
Thus, other methods to evaluate  should be performed. Clearly that  depends on the number of nods of integration. Obviously, if 
the errors in the second members of (11) are minimal, the final error will also be minimal. Considering this remark and putting 
S2m =  C1 ��

�� + C2��
�� + C3��

�� + ….. + Cn��
��,   (18) 

 
the error generated could be estimated by the formula:: 
 

2m = S2m - 
�

����
           (19) 

 
permitting us to decide how many nods of integration to be considered to minimize (19). 
The present study is based on the analysis of (6) – (10) and (18). 
 

3. Elaboration of the five firsts formulas of each numerical method of integration 
 

The domain of integration is [-1, 1]. It is divided into n equal sub domains of length 
�

�
 each. The most encountered numerical 

methods of integration could be divided into the three next groups. 
 
First group: The nods of integration are the extremities of the sub domains. Here belong the formulas of Newton-Cotes. 
Sometimes, the middles of sub domains are taken as nods of integration. 
 
Second group: The nods of integration are determined such that all the coefficients Ck in (2) are equal between themselves. The 
formulas of Tchebyshev are here. 
 
Third group: Here both the nods of integration xk and the coefficients Ck are obtained solving the system of equations (7). To this 
group belong the formulas of Gauss. 
 
This study is on the three groups. In each one, formulas for only the five firsts nods of integration will be developed, i.e. n = 1, 2, 
3, 4 and 5, their corresponding error calculated and compared between themselves for pointing out the best accurate one to be 
recommended for operational works. 
 
3.1 Formulas of Newton-Cotes 
 
Trapezoidal and the formula of Simpson are special cases of the formulas of Newton-Cotes respectively for n = 1 and 2, meaning 
that the domain of integration has been divided into 1 and 2 sub domains. In the  interval [-1,1], they are respectively given by the 
formulas: 
 

I ≈ 
�

�
(

�

�
y1 + y2 + y3 + … + yn + 

�

�
 yn+1), (20) 

 

(trapezoidal formula), 
 

I ≈ 
�

��
(y1 + 4y2 + 2y3 + 4y4 + 2y5 + … + 2yn-1 + 4yn + yn+1)        (21) 

(formula of Simpson). 
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In other domain of integration different from above, say [A, B], these expressions become: 
 

I ≈ 
���

�
(

�

�
y1 + y2 + y3 + … + yn + 

�

�
 yn+1), (22) 

 
and 
 

I ≈ 
���

��
(y1 + 4y2 + 2y3 + 4y4 + 2y5 + … + 2yn-1 + 4yn + yn+1)        (23) 

 
Put I the exact value of (1), In and I2n their approximations when n and 2n sub domains with n and 2n their corresponding errors, 
we may write In = I + n and I2n = I + 2n whence I = I2n - 2n, Experimentally, it was proved that n ≈ 42n, Therefore I = I2n - 2n 
≈  In - 42n whence: 
 

2n ≈ 
��� ���

�
.         (24) 

 
It comes that 
 

I ≈ I2n - 
��� ���

�
      (25) 

 
which is the modified trapezoidal formula. (25) gives more accurate results than (22). 
 
Formula of Newton-Cotes for n = 3 
 

[-1, 1] is divided into n = 3 equal sub domains. The nods of integration are x1 = -1, x2 = -
�

�
, x3 = 

�

�
, x4 =1. Thus (2) gives: 

 
I = C1y1 + C2y2 + C3y3 + C4y4.        (26) 
 
From (10), C1 = C4 and C2 = C3. Thus, (7) contains only two unknowns leading to the two equations to be solved for C1 and C2: 
 

C1 + C2 = 1 and C1 + 
�

�
 C2 = 

�

�
, 

 

whence C1 = C4 = 
�

�
, C2 = C3 = 

�

�
. 

 
Thus, based on (26), we have the formula of Newton-Cotes for n = 3 in [-1, 1]: 
 

I = 
�

�
 (y1 + 3y2 + 3y3 + y4).        (27) 

 
For any other domain of integration [A, B], (27) becomes: 
 

I = 
���

�
 (y1 + 3y2 + 3y3 + y4).        (28) 

 
Putting n = 3n1 and proceeding the same way we have the general formula of Newton-Cotes: 
 

I ≈ 
�(���)

��
 (y1+3y2+3y3+2y4+3y5+3y6+2y7+ … + 2yn-2+3yn-1+3yn+ 2yn+1)      (29) 

 
Formula of Newton-Cotes for n = 4 
 

The nods of integration are x1= -1, x2 = - -
�

�
, x3 = 0, x4 = 

�

�
, x5 = 1 and the coefficients C1, C2, C3, C4 and C5. From (10), we have C1 

= C5, C2 = C4 and C3. So (7) leads to the next system of three equations with three unknowns: 
 
C1+C2+C3+C4+C5 = 2,   or    2C1+2C2+C3 = 2, 

C1��
�+ C2��

�+ C3��
�+ C4��

�+ C5��
� = 

�

�
, or  2C1��

�+ 2C2��
�+ C3��

�= 
�

�
, 

C1��
�+ C2��

�+ C3��
�+ C4��

�+ C5��
� = 

�

�
,  or  2C1��

�+ 2C2��
�+ C3��

� = 
�

�
. 

 
Replacing xk by their corresponding values leads to the next system of equations: 
 

2C1+2C2+C3 = 2; 2C1+ 
�

�
C2= 

�

�
; 2C1+ 

�

��
C2 = 

�

�
, (30) 

whence C1 = C5 = 
�

��
, C2 = C4 = 

��

��
, C3 = 

��

��
, 
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and the formula of Newton-Cotes for n = 4 and any domain of integration, [A, B]: 
 

I ≈ 
���

��
 (7y1 + 32y2 + 12y3 + 32y4 + 7y5).       (31) 

 
Formula of Newton-Cotes for n = 5 
 

The nods of integration x1= -1, x2 = - -
�

�
, x3 = - -

�

�
, x4 = 

�

�
, x5 = 

�

�
, x6 = 1 and the coefficients C1, C2, C3, C4, C5 and C6. From (10), C1 

= C6, C2 = C5 and C3 = C4. (7) leads to the next system of three equations with three unknowns to be solved for the coefficients: 
 
C1+C2+C3+C4+C5+C6 = 2,          2(C1+C2+C3) = 2, 

C1��
�+ C2��

�+ C3��
�+ C4��

�+ C5��
�+C6��

� = 
�

�
, or  2(C1��

�+ C2��
�+ C3��

�)= 
�

�
, 

C1��
�+ C2��

�+ C3��
�+ C4��

�+ C5��
� +C6��

�= 
�

�
,  or  2(C1��

�+ C2��
�+ C3��

�)= 
�

�
, 

 

Replacing xk by their corresponding values, the system of equations becomes: 
 

C1+C2+C3 = 1,   C1+ 
�

��
C2+ 

�

��
C3= 

�

�
,  C1+ 

��

���
C2+ 

�

���
C3= 

�

�
,    (32) 

whence C1 = C6 = 
��

���
, C2 = C5 = 

��

���
, C3 = C4 = 

��

���
, 

 
and the formula of Newton-Cotes for n = 5 and any domain of integration, [A, B]: 
 

I ≈ 
���

���
 (19y1 + 75y2 + 50y3 + 50y4 + 75y5 + 19y6).        (33) 

 
3.2 The formulas of Tchebyshev 
 
Here all the coefficients in (2) are equal. Thus, we may write that 
 

C1 + C2 + C3 + … + Cn = nC = 2,  (39) 
 

where n is the number of the nods of integration. Thus, the coefficient is C = 
�

�
. Taking (9) into consideration, (7) becomes: 

 

��
�+��

�+��
�+ … +��

�

� = 
�

�
, 

��
�+��

�+��
�+ … +��

�

� = 
�

��
,  (40) 

��
�+��

�+��
�+ … +��

�

� = 
�

��
, 

………………………… 
 
Remark that if the number of nods of integration is odd, then the nod at the middle of [-1, 1], will be ����

�

 = 0, the center of 

symmetry. 
 
Putting ��

�  = uk, (40) becomes: 
 

�� +�� +�� + … +��

�

 = 
�

�
, 

��
�+��

�+��
�+ … +��

�

� = 
�

��
,  (41) 

��
�+��

�+��
�+ … +��

�

� = 
�

��
, 

………………………… 
 

Putting  
�

�
 = k1, 

�

��
 = k2, 

�

��
 = k3, …,  

�

����
 = kn, (41) becomes: 

 

�� +�� +�� + … +��

�

 =k1, 

��
�+��

�+��
�+ … +��

�

� =k2,  (42) 

��
�+��

�+��
�+ … +��

�

� =k3, 

………………………… 
 

Remark that the denominators of the second members of equations of (41) are in arithmetic progression, the first term being 6 and 
the ration 4. Its general term is 4m+2. Assume that (42) has s rows for s roots to be determined. This leads to the next equation of 
order s to be solved for u: 
 

us + A1u
s-1 + A2u

s-2 + A3u
s-3 + … + As-1u + As = 0.  (43) 

2054                                        International Journal of Science Academic Research, Vol. 02, Issue 08, pp.2050-2059, August, 2021 



As by hypothesis u1, u2, …, us are the roots of (43), they should verify the system of equations: 
 
��

� + A1��
���+ A2��

��� + … + As-1u1 + As = 0, 
��

� + A1��
���+ A2��

��� + … + As-1u2 + As = 0,  (44) 
………………………………………………., 
��

� + A1��
���+ A2��

��� + … + As-1us + As = 0, 
 
Summing (44) member by member leads to the next equation: 
 
(��

� + ��
� + ��

� + … + ��
�) + A1(��

��� + ��
��� + ��

��� + … + ��
���) + 

A2(��
��� + ��

��� + ��
��� + … + ��

���) + … + As-1(��  + ��  + ��  + … + �� ) 
+ sAs = 0.         (45) 
 
Taking the second members of (42) into account, (45) becomes: 
 
ks + A1ks-1 + A2ks-2 + A3ks-3+ … + As-1k1 + sAs = 0,  (46) 
 
whence the coefficients of (46) to be obtained from the next formula: 
 

As = - 
�

�
 (ks + A1ks-1 + A2ks-2 + A3ks-3+ … + As-1k1 ). (47) 

 
Following (47), we have the searched coefficients: 
 
A1 = - k1, (s = 1), 

A2 = - 
�

�
 (k2 + A1k1), (s = 2), 

A3 = - 
�

�
 (k3 + A1k2 + A2k1), (s = 3),   (48) 

A4 = - 
�

�
 (k4 + A1k3 + A2k2 + A3k1), (s = 4), 

 
and so on. Based on (48) and (46) we could determine the nods of integration for any n. 
 
Formula of Tchebyshev for n = 2 
 
For n = 2, even number, the two nods to be found, x1 and x2, with x1= - x2, conferred (9), are: 
 

u1 = 
�

�
 = 

�

�
 = ��

�  ® x1 = - √��= - �
�

�
 = - 0.577350, x2 = 0.577350,   (49) 

 
and the formula of Tchebyshev for n= 2 is: 
 

I = ∫ �(�)��
�

��
 ≈ f(x1) + f(x2).= f(- 0.577350) + f( 0.577350)        (50) 

 
Formula of Tchebyshev for n = 3 
 
Three nods, x1, x2 and x3, with x2 = 0 and x1 = - x3.  We have: 
 

u1 = 
�

�
 = 

�

�
 = 

�

�
 = ��

�  ® x1 = - √��= - 0.707107, x3 = 0.707107; 

 
whence the nods of integration : 
 
x1 = - 0.707107, x2 = 0, x3 = 0.707107, (51) 
 
and the formula of Tchebyshev for n = 3: 
 

I = ∫ �(�)��
�

��
 ≈ f(x1) + f(x2) + f(x3) = f(- 0.707107) + f(0) + f(0.707107).         (52) 

 
Formula of Tchebyshev for n = 4 
 
For n = 4, four nods to be found, x1, x2, x3 and x4, with x1 = -x4 and x2 = - x3. Based on (48), the coefficients of (46) are: 
 

A1 = - k1 = (n=4) = - 
�

�
 = - 

�

�
, A2 = (s=2) = - 

�

�
 (k2+A1k1) = (k2=

�

��
=

�

��
) = 

�

��
. 
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Thus, equation (46) becomes: 
 

u2 - 
�

�
 u + 

�

��
 = 0,  (53) 

whence the nods of integration: 
 

x1 = - 0.794654, x2 = - 0.187592, x3 = 0.187592, x4 = 0.794654. (54) 
 

and the formula of Tchebyshev for n = 4: 
 

I = ∫ �(�)��
�

��
 ≈ f(x1) + f(x2) + f(x3) + f(x4) = f(-0.794654) + f(- 0.187592) + f(0.187592) + f(0.794654)         (55) 

 
Formula of Tchebyshev for n = 5 
 
For n = 5, five nods, the central one being x3 = 0. The remaining nods are x1, x2, x4 and x5 with x1= -x5, x2= -x4. The coefficients of 
(46) are: 
 

k1 = 
�

�
 = - A1; k2 = 

�

��
,  A2 = - 

�

�
 (k2+ A1k1) = 

�

��
. 

 
The equation (46) becomes: 
 

u2 - 
�

�
 u + 

�

��
 = 0, 

 
whence the nods of integration: 
 

x1,5 = ∓ 0.832498, x3 = 0, x2,4 = ∓ 0..374541  (56) 
 
and the formula of Tchebyshev for n = 5: 
 

I = ∫ �(�)��
�

��
 ≈ f(x1) + f(x2) + f(x3) + f(x4) + f(x5) = f(-0.832498) + f(-0..374541) + f(0) + f(0..374541) + f(0.832498)   (57) 

 
3.3 Formulas of Gauss 
 
Here, the nods of integration, xk, and coefficients, Ck, are to be determined under conditions (9) and (10). If the domain of 
integration is divided into an even number, n, of sub domains, then (7) and (8) for finding xk and Ck are reduced to the next 
systems: 
 

C1 + C2 + C3 + … + ��

�
  = 1, 

C1��
� + C2 ��

� + C3 ��
� + … + ��

�
  ��

�
  

� = 
�

�
,   (58) 

C1��
� + C2 ��

� + C3 ��
� + … + ��

�
  ��

�

�  = 
�

�
, 

………………………………………… 

C1��
�(���)

 + C2 ��
�(���)

 + C3 ��
�(���)

 + … + ��

�
  ��

�

�(���)
= 

�

����
. 

 
But if n is an odd number, the coefficient ����

�

 corresponding to the center of symmetry, ����

�

 = 0 should be added to the first 

equation of (58). Thus, we have the system: 
 

2(C1 + C2 + C3 + … + ����

�

 ) + ����

�

 = 2, 

C1��
� + C2 ��

� + C3 ��
� + … + ����

�

  ����

�
  

� = 
�

�
,   (59) 

C1��
� + C2 ��

� + C3 ��
� + … + ����

�

  ����

�

�   = 
�

�
, 

………………………………………… 

C1��
�(���)

 + C2 ��
�(���)

 + C3 ��
�(���)

 + … + ����

�

  ����

�

�(���)
= 

�

����
. 

 

Put uk = ��
� as previously done. (58) and (59) respectively become: 

 
C1 + C2 + C3 + … + ��

�
  = 1, 

C1u1 + C2 u2+ C3 u3 + … + ��

�
  �� 

�
 = 

�

�
,   (60) 

C1��
� + C2 ��

� + C3 ��
� + … + ��

�
  ��

�

�  = 
�

�
, 

………………………………………… 

C1��
(���)

 + C2 ��
(���)

 + C3 ��
(���)

 + … + ��

�
  ��

�

(���)
= 

�

����
, 
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and: 
 
2(C1 + C2 + C3 + … + ����

�

 ) + ����

�

 = 2, 

C1u1 + C2 u2+ C3 u3 + … +  ����

�

  ����

�
  
 = 

�

�
,   (61) 

C1��
� + C2 ��

� + C3 ��
� + … +  ����

�

  ����

�
  

�   = 
�

�
, 

………………………………………… 

C1��
(���)

 + C2 ��
(���)

 + C3 ��
(���)

 + … +  ����

�

  ����

�
  

��� = 
�

����
. 

 

Assume that (60) has 
�

�
  rows with the same number of unknowns. As previously indicated, these unknowns are the roots of the 

equation: 
 

�
�

�  + A1�
�

�
��

 +  A2�
�

�
��+ … + ��

�
��u + ��

�
 = 0,      (62) 

(for n - even) 
 

�
���

�  + A1 �
���

�
�� + A2 �

���

�
�� + A3 �

���

�
��  + … + ����

�
��

u + ����

�

 = 0,   (63) 

(for n - odd). 
 
Solving (62) or (63) leads to the nods of integration to be used for finding the coefficients Ck. 
 
Formula of Gauss for n = 2 
 

Two equal coefficients C1,2, C1 = C2;  
�

�
 = 1, whence the system of equations to be solved for u and C: 

 

C1 = 1 and C1u = 
�

�
  = u, x1,2 = ∓ �

�

�
  = ∓ 0.577350. 

 
For this case, the formula of Gauss is: 
 

I = ∫ �(�)��
�

��
 ≈ C1f(x1) + C2f(x2) = f(-0.577350) + f(0.577350).  (64) 

 
Formula of Gauss for n = 3 
 
The coefficients are C1 = C3, C2, and the nods of integration:  x1, x2 = 0, x3, x1 = -x3 The system of equations to be solved for these 
parameters is: 
 

2C1 + C2 =2; C1u1 = 
�

�
; C1��

� = 
�

�
, u1 = 

�

�
, x1,3 = ∓0.774597, C1 = C3 = 

�

�
, C2 = 

�

�
, 

 
whence the formula of Gauss for n = 3: 
 

I = ∫ �(�)��
�

��
 ≈ C1f(x1) + C2f(x2) + C3f(x3) = 

�

�
f(-0.774597) + 

�

�
f(0) + 

�

�
f(0.774597).     (65) 

 
Formula of Gauss for n= 4 
 
The nods are x1 = -x4, x2 = -x3 and the coefficients: C1 = C4 and C2 = C3. (58) leads to the next system of four equations: 
 
(1) C1 + C2  = 1, 

(2) C1u1 + C2u2 = 
�

�
, 

(3) C1��
� + C2��

� = 
�

�
,   (66) 

(4) C1��
� + C2��

� = 
�

�
. 

 

n = 4, 
�

�
 = 2 - the order of equation (62) to be solved for uk. This quadratic equation is: 

 
u2 + A1u + A2 = 0.   (67) 
 
Letting u1 and u2 its roots, we may therefore write: 
 
��

� + A1u1 + A2 = 0,  ��
� + A1u2 + A2 = 0.      (68) 
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The coefficients A1 and A2 of (67) are searched combining the equations of (66) the next way: 
 
(4) + A1(3) + A2(2) and (3) + A1(2) + A2(1).  (69) 
 
The first combination of (69) leads to: 
 

C1��
� + C2��

� + A1(C1��
� + C2��

� ) + A2(C1u1 + C2u2 ) = C1u1(��
� + A1u1 + A2 ) + C2u2(��

� + A1u2 + A2) =  0 = 
�

�
 + 

�

�
A1 + 

�

�
A2, 

 
and the second combination to: 
 

(3) + A1(2) + A2(1). = 0  = 
�

�
 + 

�

�
A1 + A2. 

 
Whence the system of the two equations to be solved for A1 and A2: 
 

0 = 
�

�
 + 

�

�
A1 + 

�

�
A2, 0 = 

�

�
 + 

�

�
A1 + A2.   (70) 

 

The searched coefficients are A1 = - 
�

�
 and A2 = 

�

��
 and (67) becomes: 

 

u2 - 
�

�
u + 

�

��
 = 0   (71) 

 
their roots are u1 ≈ 0.741555 = ��,�

� ;  u2 ≈ 0.115587 = ��,�
�  Then, we can find the coefficients solving the next system of equations: 

 

C1 + C2 = 1 and C1u1 + C2u2 = 0.741555C1 + 0.115587C2 = 
1

3
 

 
whence C1 ≈ 0.347855 and C2 ≈0.652145. 
 
We have the nods of integration from the root squares of u1,2: 
 
x1,4 = ∓√�� = ∓0.861136, x2,3 = ∓√�� = ∓0339981. 
 
Whence the formula of Gauss for n = 4: 
 
I = ∫ �(�)��

�

��
 ≈ C1f(x1) + C2f(x2) + C2f(x3) + C1f(x4) = 0.347855f(-0.861136) + 0.652145f(-0.339981) + 0.652145f(0.339981) + 0.347855f(0.861136)  (72) 

 

Formula of Gauss for n = 5 
 
The coefficients are C1 = C5, C2 = C4, C3 and the nods of integration:  x1= -x5, x2 = -x4, x3 = 0,. The system of the five equations to 
solve for these parameters is: 
 

(1) 2(C1 + C2) + C3 = 2;  (2) C1u1 + C2u2 = 
1

3
;  (3) C1��

� + C2��
� = 

1

5
 ; 

(4) C1��
� + C2��

� = 
1

7
;  (5) C1��

� + C2��
� = 

1

9
. 

 

As 
���

�
 = 2, so the quadratic equation to be solved for the nods is: 

 
u2 + A1u + A2 = 0.   (73) 
 
The combinations to form for finding the coefficient of (73) are: 
 
(5) + A1(4) + A2(3) and (4) + A1(3) + A2(2) 
(6)  
 
which lead to the system of two equations with two unknowns A1,2: 
 
1

9
 + 

1

7
A1 + 

1

5
A2 = 0 and 

1

7
 + 

1

5
A1 + 

1

3
A2 = 0,   (74) 

 
Solving (74), (73) becomes: 
u2 - 1.1111182u + 0.2380980 = 0 
 

whence u1 = 0.8211677 = �1,5
2 , u2 = 0.2899506 = ��,�

� ,and the nods x1,5 = ∓0.906183, x2,4 = ∓ 0.5384706, x3 = 0. 
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The coefficients are obtained solving the system of equations: 

C1u1 + C2u2 = 
1

3
;   C1��

� + C2��
� = 

1

5
 ; 

 

whence C1,5 = 0.236922, C2,4 = 0.478635, C3 = 0.5688856. 
 
The formula of Gauss for n = 5 is: 
 

I = ∫ �(�)��
�

��
 ≈ C1f(x1) + C2f(x2) + C3f(x3) + C2f(x4) + C1f(x5) = 0.236922f(-0.906183) + 0.478635f(-0.5384706) + 

0.5688856f(0) + 0.478635f(0.5384706)+ 0.236922f(0.906183).   (75) 
 

4. Estimations of the errors generated by each method 
 
Different estimations of the errors generated by each method, 2m, are indicated in Table 1. This table indicates that for the three 
methods and all the considered number of nods, n, the error generated for 2m = 0 is 0 = 0. The methods of Newton-Cotes and 
Tchebyshev have led to the same result for n = 2, 3, 4 and 5 and 2m = 2 (i.e. m = 1). Thus, we conclude that if the integrating 
function (4) is of first order, these two numerical methods lead to accurate results. Otherwise. Elsewhere the same conclusion can 
be made when the estimations is 2m = 0. The error starts to occur when 2m ≠ 0 like 4 and  6 for n = 2 and 3, indicating that if the 
order of the function (4) is at least 2 (case of 4) or 3 (case of 6) the result will not be accurate because of errors generated. In 
general, for all the three methods the estimations 6 (i.e. m = 3) are different from zero meaning that during practical works the 
best degree of the function (4) to be considered for better results should not reach 3. 
 

Table 1. Table of the estimations of the errors 
 

 Newton-Cotes Tchebyshev Gauss 

n 2m S2m e2m S2m e2m S2m e2m 

2 

0   2 0 2 0 
2   0.667 0 0.667 0 
4   0.222 -0.178 0.222 -0.178 
6   0.074 -0.212 0.074 -0..212 

3 

0 2 0 2 0 2 0 
2 0.667 0 0.667 0 0.478 -0.189 
4 0.519 0.119 0.333 -0.067 0.148 -0.252 
6 0.502 0.216 0.167 -0.119 0.046 0.003 

4 

0  2 0 2 0 2 0 
2 0.667 0 0.667 0 0.666 -0.001 
4 0.400 0 0.400 0 0.399 -0.001 
6 0.333 0.048 0.252 -0.034 0.286 0 

5 

0 2 0 2 0 2 0 
2 0.667 0 0.667 0 0.668 0.001 
4 0.400 0 0.400 0 0.400 0 
6 0.313 0.027 0.269 -0.017 0.143 -0.143 

 
The temptation to develop other formulas for n>5 has indicated that when n increases the coefficients of the equations and 
systems of equations to be solved for the needed parameters, become very smaller and could probably bring to ill-conditioned 
problems, (Wilkinson, 1959). Moreover higher orders of these equations and systems of equations complicate the computation 
process and should also be a source of other errors, between others, round off errors. Table 1 also shows that corresponding 
estimations of the errors generated by these methods are smaller for the method of Gauss than the ones issued from the method of 
Tchebyshev and these ones are smaller than the ones from the method of Newton-Cotes. Therefore, it is obvious that the method 
of Gauss gives more accurate results compared to the methods of Tchebyshev and Newton-Cotes, respectively. 
 

5. Conclusion 
 
Obviously, the numerical methods are very helpful for those function whose anti derivative cannot be found analytically. To avoid 
round off errors and ill-conditioned problems during practical works, only a few nods of integration, not exceeding 5, should be 
considered and for more accurate results, integrating function should be replaced by algebraic function of order not exceeding 2. 
The authors cease this opportunity to thank the Hotel Saphir in Maroua, Far North Region of Cameroon, particularly his general 
manager who provided him a best condition to carry out this study. 
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