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Abstract 
 

We introduced the topological fundamental group and presented some interesting basic properties of the notion. Also we extend the notion to 
homotopy groups and try to prove some similar basic properties of the topological homotopy groups. We also study more about the topology of 
the topological homotopy groups order to find necessary and sufficient conditions for which the topology is discrete. We followed the analytical 
induction mathematical method and we found that studying homology groups may be more than cohomology fundamental groups. 
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INTRODUCTION 

 
Algebraic topology is twentieth century field of mathematics 
that can trace its origins and connection, and homology is one 
of the main idea of algebraic topology Algeria's topology is 
one of the most important creation in mathematics which uses 
algebraic tools to study topological spaces. The most important 
of this invariants are homology groups, homology groups and 
co- homology groups. The goal of this paper is to acquire uses, 
study some classes of algebraic topology (some underline 
geometry notation. The fundamental group homology 
ethology. Homogony theory and some application to scientific 
field. 
 

The Topology of π�
���

 (X) 
 

We are going to study more on the topology of π�
���

(X), 
specially we intend to find necessary and sufficient conditions 

for whichπ�
���

(X)is discrete. 
 
Definition (1.1). A topological space X is called n-semilocally 
simply connected if for each x ∈ X there exists an open 
neighborhood U of x for which any n-loop in Y is 
nullhomiotopic in X. In other words the induced 
homomorphism of the inclusion i∗ : π� (U, x) → π� (X,x) is 
zero  ]1[  
 

Theorem (1.2). If π�
���

 is discrete, then X is n-semilocally 
simply connected. 
 

Proof. For each x ∈X, sinceπ�
���

(X, r) is discrete, there exists 
an open neighborhood Win Hom((In, In), (X, x)) of the constant 
n-loop at x such that each element of W is homotopic to the 
constant loop at xBy compact-open topology, we can consider 
W as∩���

� ⟨K�, U�⟩, where Ki's are compact subsets of I�and U�'s 
are open in X. Consider U = ∩���

�  Ui as a nonempty open 
neighborhood, then ⟨I�, U⟩ ⊆ W.  
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Therefore any n-loop in U at a belongs to W and so is null 
homotopic in x. Hence X is n-semilocally simply connected ].3[ 
Note that the following examples show the inverse is not truc, 
in general. In both of them, we use the fact that the compact-
open topology on Hom((I�,i�), (X,0)) is a equivalent to the 
uniformly convergence topology when X is metric space [6]. 
 
Example (1.3). Let X=UU�ϵ���, where Sn 

 

Sn=�(x, y, z��x − 
�

�
�              (1) 

 

Sn=�(x, y, z�)�x − 
���

�
)� + y� + z� = (

���

��
)��            (2) 

 
= {(x,y,z) | ( S₁ = {(1, v.2)| (1 ² + y² + 2² = ^²=1 1² + 1² + 2² = 
(^2=¹)²), 211 for each n ≥2. Then (S) as a sequence of 2-loops 
in X at p= (0,0,0) uniformly 
 
converges to S₁. Now (S₁) is a limit point in 2(X, z), 
nevertheless X is 2-Semilocally simply connected. 
 
Example (1.4). Let X denotes the following subspace of R³: 11 
X= [0, 1]x [0, 1]x (0.1) U[0. 1] x (0, 1) x (0.1) U 

�0,1,
�

�
,

�

�
, … � X[0,1]X[0,1]                          (3) 

 
Let p= (0,0,0). Consider the following sequence of 2-loops at p 

X�= [0,
�

�
]x [0, 1]x {0�. �1}U [0,

�

�
] x {0�. �1}x [0.1] U 

�
�

�
� X[0,1]X[0,1]                                          (4) 

 
Obviously, this sequence is uniformly convergent to the 
nullhomotopic loop Xo = (0) [0, 1]× [0, 1]. Thus 20(X) is not 
discrete, however one can see that X is 2-Semilocally simply 
connected. 
 
Definition (1.5) Let f: X → Ybe a mapping of one topological 
space into another. A real function f (x), x ≥ 0 is said to be 
continuous at the point x0 in x if for each neighborhood of f 
(x0) there exists a neighborhood of x0 Such that f(G) ⊆ H [1]. 



Definition (1.6) Let XC R" and YcR". A function: f: X → Y is 
continuous if whenever yis an open set in Y, therf ��(y) is an 
open set in X. 
 
Definition (1.7) The function is continuous at the point xo in 
Xif for each ε> 0 there exists δ>0 such that d₁(x,x0)< � ⟹ d2. 
(f(x), ƒ(x0)) <ε [6]. 
 
Definition(1.8) Let f:X→Y be topological spaces and fand g 
continuous functions from X to Y. Then fis tiomotopic to g if 
there is a continuous family of continuous functionsf�X →
Y for 0 ≤ t ≤ 1 satisfying: 
 

i. f� = f 
ii. f� = g 
iii. f�(x)is continuous both as a function of veX and as a 

function of [0.1] 
 
Definition (1.9) For any topological space X, the abelian 
group D. and integer n ≤ 0 , there is sequence of Aeolian 
groups H�(X. D)for n = 0,1,2,3 … … … … … 
 

Simplified Embedding's and Immersions 
 
The containment problem for subcomplexes of random 2-
dimensional complexes is similar to the containment problem 
for random graphs, we also study simplicial immersions, which 
are more general than simplicial embeddings. Let S be a 2-
dimensional finite simplicial complex We assume that S is 
fixed. independent of n. The set of vertices of S is denoted by 
V(S). 
 
Definition 2.1 A simplicial embedding g: S→ Y, where Y∈ 

G(∆�
(�)

,p ) is a random, 2-complex, is defined as an injective 
map of the set of vertice V(S) of Sinto the set of vertices 
{1, … . n} of Y satisfying the following condition: for any triple 
of distinct vertices (u₁), (u₂),(u3)∈ V(S) which span a simplex 
in S, the corresponding points g(u1), g(u2), g(u3) ∈ {1, … . n} 
span a face of Y [5]. 
 
The following definition describes a more general notion. 
 
Definition 2.2 A simplicial immersion g: S Y into a random 2-

complex Y ∈ G(∆�
(�)

, P) is defined as a map of the set of 
vertices V(S) of 5 into the set of vertices {1, … . n} of Y 
satisfying the following two conditions 
 
(a) for any triple of distinct vertices u₁, u₂, u3∈ V (S) which 
span a 2-simplex in S. the corresponding points g(u1). g(u2), 
s(u3) ∈ {1, … . n} are pairwise distinct and span a face of Y 
(b) for any pair of distinct 2-simplexes and (σ) of ( σ�) S, the 
corresponding 2-simplexes g(σ) and g(σ�) of Y are distinct [4]. 
 
Definition 2.3 For a simplicial 2-complex S let u(S) denote 
 

μ(S) = 
�

�
∈ Q               (5) 

 
where u =us and f = fs are the numbers of vertices and faces in 
S. 
 
Definition 2.4 Let S be a finite 2-dimensional sinplicial 
complex. Define 
 

μ�(�) = min
�′⊂�

� (� ′),                                         (6) 

where the minimum is formed over all subcomplexes S' ⊂S or. 
equivalently, over all pure subcomplexesS′ ⊂ SNote that the 
invariantisμ�  monotone decreasing: if S is a subcomplex of 'T 
thenμ�(S) ≥ μ�(T) [2]. 
 
Balanced and unbalanced triangulations 
 
Definition 2.5 A finite simplicial 2-complex S is called 
balanced if (S) = μ(S)= μ�(S) i.e. if the quantities defined in 
Definitions 2.7 and 2.8 coincide. In other words, S is balanced 
if μ(S) ≤ μ (S′) for any subcomplex (S′)′ ⊂ S [4]. 
 
Definition 2.6 is similar to the corresponding notion for 
random graphs, see 
 
Example 2.7 Let S = Σg be a triangulated closed orientable 
surface of genus g ≥ 0. Then x(S)=2-2g=u-e+f where u, e, f 
denote the numbers of vertices, edges and faces in S 
correspondingly. Each edge is contained in two faces 
whichgives 3f = 2e and therefore 
 

��Σ�� =
�

�
+

����

�
              (6) 

 
Similarly, if S = Ng is a triangulated closed nonorientable 
surface of genus g ≥ 1 then x(Ng) =2-g and 
 

�(��) =
�

�
+

���

�
               (7) 

 
Formulae (2) and (3) give the following: 
 
Corollary 2.8 The invariant μ(Σ)of an orientable triangulated 
surface Σ� sut isfies: 
 

(1) 1/2 <Σ� ≤1 for g=0 (since ƒ ≥ 4); 

(ii) (Σ�) = 1/2 for g=1 (the torus); 

(iii) (Σ�) < 1/2 for g> 1; 

(iv) Iff→∞(i.e. when the surface is subsequently subdivided) 
then u(Σ�) → 1/2. Corollary[5] 

 
Corollary 2.9 The invariant u(Ng) of a nonorientable 
triangulated surface Ng satisfies: 
 
(i) 1/2 <μ(Ng) ≤ 3/5 for g=1 (since f≥10); 
(ii) μ(Ng) =1/2 for g=2 (the Klein bottle); 
(iii) μ(N₂) < 1/2 for g> 2; 
(iv) Iff →  ∞ (i.e. when the surface is subsequently subdivided) 
then (Ng) → 1/2 [6]. 
 
Example 2.10 Let S be a triangulated disc. Then x(S) = u- e+ f 
= 1 and 3f = 2e – e0 to where co is the number of edges in the 
boundary OS. Substituting = (3f+e0)/2, one obtains 
 

�(�) =
�

�
+

��

��
+

�

�∗              (8) 

 
As a specific example consider the regular n-gon S shown on 
the figure on the left. Then u = n + 1, f = n, e� = n=and 
 

�(�) = 1 +
�

�∗              (9) 

 
Quantizing the Free Relativistic Scalar Field 
 

Our goal is to quantize the free relativistic scalar field in n 
spatial dimensions. (Note that we will use a more naturally 
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relativistic notation than Peskin and Schroeder [7], although 
we will keep the particle physicists mostly minus convention 
for the metric). 
 
We will postulate that the relevant relative is tically invariant 
Lagrange (density) is 
 

ℒ =
�

�
(∂μϕ

�
)� −

�

�
m�

�ϕ
�
�            (10) 

 
We seek a solution do associated with the above Lagrange 
(density) and a spectrum of the field operator (eigenvalues and 
eigenvectors). We will find that do is the bare (renormalized) 
operator associated with the production of a single scalar 
particle of mass mo. For notational simplicity, for the rest of 
this section we will drop the 0 subscript and the operator hat. 
(Note that since the theory is non-interacting, we can solve the 
theory exactly and without renormalization.) Dimensional 
analysis is an invaluable tool for the physicist, and so we 
should pause for a moment to analyze the dimensions of the 
objects in our theory. The path integral goes as J Does, where 
SJ dz +1C. Since one can only take a number to the power of a 
dimensionless number, the action must be dimensionless, [S] = 
1. Since [+¹] = "t¹ = E(n+1), we have that [C] =E+¹ Since 
[0]=[m] = E, we have that [] - E-11/2 Our solution must first of 
all satisfy the classical equations of motion found by 
extremizing the action. The Euler-Lagrange equations yield. 
 
(� + m�)ϕ = 0             (11) 
 
Already things are looking very promising: the equations of 
motion are Lorentz invariant (as they must be as the 
Lagrangian is Lorentz invariant). We may readily solve Eq. 3 
by decomposing our solution into Fourier modes. 
 

ϕ(x) = ∫
��

(�π)������⃗
�a����⃗ e��� + a����⃗ e����p� = E���⃗ �p�� + m�     (12) 

 
Notice how: 1) we have (explicitly) separated out the classical 

from the quantum in Eq. 4, where ϕ�= ϕ�automatically; 2) the 
Fourier modes obey the usual relativistic dispersion relation; 
and 3) dimensional analysis implies that E(n-1)/2=E n-[a�], so then 
[a�] = E (1-n/2)= [a�t]. In order to quantize Eq. 10, we must impose 
the Dirac quantization condition. We must of course then first 
decide what the Dirac quantization condition is. Since we are 
interested in relativistic theories, we will require that fields 
cannot influence each other outside of the lightcone. Hence a 
sensible generalization from the 1D NRQM case ofx�, p�  =i for 
the Dirac quantization condition for fields is to require an 
equal-time contact interaction: 
 

[ϕ(x��, x�⃗ )π�(�y�⃗ ] = is�(x�⃗ − y�⃗ )           (13) 
 
Le fields at the same time (in one inertial frame) may only 
affect each other at exactly equal points (otherwise information 
could propagate faster than the speed of light). As an aside, it's 
an interesting exercise, once we've solved for ϕ(�), to compute 

the commutator [ϕ�(x), ϕ�(y),] without the equal time 
restriction! [3]. 
 
Theorem 3.1 Fix an integer r > 1 and consider the r-thBetti 
number of the associated graph group, 
 

b�: G�∆�
(�)

, p� → z, b�(T) = b�(A�)                                      (14) 

as a random function of a random graph. If the limit (8) erists 
and is positive then for any integer k= 0, 1,..., the probability P 
(b� (A�) = k) converges (as n→∞) 
 

to e�⋋ ⋋�

�!
 where = ⋋=

��

�!
 

 
In other words, the limiting distribution is Poisson with mean⋋ 
[5]. 
 
Example 3.2. Let X = ∪�∈� S� N, where 
 

S� = �(x, y, z)�(x −
�

�
)� + y� + z� =

�

�
�,          (15) 

 

S� = �(x, y, z)�(x −
���

��
)� + y� + z� = (

���

��
)�.         (16) 

 
for each n ≥2. Then {S�}as a sequence of 2-loops in X at p= 
(0,0,0) uniformly converges to S. Now (S�] is a limit point in 

π�
���

 (X, x), nevertheless X is 2- semilocally simply connected. 
 
Example 3.3. Let X denotes the following subspace of R� 
 
x =  [0,1] ×  [0,1] ×  {0,1}  ∪  [0,1] × {0,1} × [0,1] ∪

�0,1,
�

�
,

�

�
… . � × [0,1] × [0,1] .                                             (17) 

 
Let p= (0,0,0). Consider the following sequence of 2-loops at p 
 

X� =  �0,
�

�
� ×  [0,1] ×  {0,1} ∪   �0,

�

�
� × {0,1} ×  [0,1] ∪ �

�

�
� ×

[0,1] × [0,1]                                                                  (18) 
 
Obviously, this sequence is uniformly convergent to the 

nullhomotopic loop X0 = {0}x [0, 1] x [0, 1]. Thus π�
���

 (X) is 
not discrete, however one can see that X is 2- semilocally 
simply connected [7]. 
 
The Struggle for Scientific Authority 
 
A particular kind of social capital which gives power over the 
constitutive mechanisms of the field, and can be reconverted 
into other forms of capital, owes its specificity to the fact that 
the producers tend to have no possible clients other than their 
competitors (and the greater the autonomy of the field, the 
more this is so). This means that in a highly autonomous 
scientific field, a particular producer cannot expect recognition 
of the value of his products ("reputation", "prestige". 
"authority", "competence", etc.) from anyone except other 
producers, who, being his competitors too, are those least 
inclined to grant recognition without discussion and scrutiny. 
This is true de facto: only scientists involved in the area have 
the means of symbolically appropriating his work and 
assessing its merits. And it is also true de jure; the scientist 
who appeals to an author ity outside the field cannot fail to 
incur discredit (In this respect, the scientific field functions in 
exactly the same way as a highly autonomous artistic field": 
one of the principles of the specificity of the scientific field lies 
in the fact that the competitors must do more than simply 
distinguish themselves from their already recognised 
precursors: if they are not to be left behind and "outclassed", 
they must integrate their predecessors and rivals work into the 
distinct and distinctive construction which transcends it.). In 
the struggle in which every agent must engage in order to force 
recog. nition of the value of his products and his own authority 
as a legitimate producer, what is at stake is in fact the power to 
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impose the definition of science (i.e. the delimitation of the 
field of the problems, methods and theories that may be 
regarded as scientific) best suited to his specific interests, i.e. 
the definition most likely to enable him to occupy the 
dominant position in full legitimacy, by attributing the highest 
position in the hierarchy of scientific values to the scientific 
capacities which he personally or institutionally possesses (e.g. 
by being highly trained in mathematics, having studied at a 
particular educational institution, being a member of a 
particular scientific institution, etc.). In more than one debate 
on the priority of a scientific discovery, the scientist who 
discovered the unknown phenomenon, often in the form of a 
simple anomaly not covered by existing theories, has clashed 
with the scientist who made a new scientific fact of it by set 
ting it in a theoretical construction irreducible to the simple 
empirical datum. These political arguments about scientific 
property rights, which are at the same time scientific debates 
on the meaning of what has been discovered and 
epistemological arguments as to the nature of scientific 
discovery, are in reality the expression of the conflict between 
two principles. 
 
The Hemotopy of the Agring Process  
 
The study of topology relies on the intrinsic properties of the 
body. It is coordinate-free since it does not depend on 
theproperties of the chosen coordinates of body. In the study 
the human body xis consideredin the topological space since 
our goal is to study the continuous function of the ageing 
process. The importance of it all is to construct the algebraic 
invariants such as homotopy that reflect the connectivity of the 
body. Consider the human body 
 
x = s�x1 SI and let x ∈ x and t ∈ T define the growth of the 
body and the age of the body respectively. Since the final age 
of the human body is not known let t = ϕ represent the final 
age of the body such that t ∈ [β, ∞] denotes the age interval of 
the body from t=β, to t=∞. The time t=∞. is the age threshold 
value of the human body. The ageing process for all tet ∈ T is 
the family or the sequence of the functions f�(x) which occurs 
as f�(x) approaches g(x)∈ ∞ for all g(x). Suppose t ∈ [0, ∞] is 
the interval of the ageing body and f. g: x → x are the two 
functions of the topological shape of the human body,then the 
shape of the wrinkled body ∞ years old is given by the 
continuous map f�(x) such that f�(x) = f (x) and f∞(x) = g(x) as 
shown in Figure 1. 
 

 
 

Figure 1. The shape of a wrinkled human body from � (�) to g(r) 
 

The closed connected human body x S x/ is defined by the 
functions f. h: x → x on the interval 1 = [0, β] where fandhare 
homotopy equivalences. The interval = 1[0, β] provides the 
initial age and height of the whole body x = s� × 1 [3]. 
 
Homology  
 

We study homological properties of finite free complexes over 
noetherian local hinges. The result uncover novel links 

between the structure of the homology modules of such 
complexes and cornmeal modules of the ring. The arguments 
use techniques from commutative algebra, differential graded 
homological algebra [2]. 
 
Lemma (6.1): 
 
For every complex of B- module M there is an in equality 
 

Level�
�(m) ≤ inf�ΣLevel�

� (l�)� L = mindc (R)                    (19) 

 
Proof: 
 
As Level�

� =  Level �
�  (l)            (20) 

 
It suffices to assume that only finitely many components have 
non-zero and to show that then one has 
 

Level�
�(l)Σ���Level�

� (l�)            (21) 
 
The complex L admire filtration 
 
L≤ n − 1 c�c … … . ., 
 
And there are isomorphism 
 
L ≤ n / L ≤ n − 1 = Σ�l�            (22) 
 
Yield's 
 
Level�

�(Σ�l�) = Level�
� (l�)           (23) 

 

Theorem (6.2). Let(x�) be a pointed space. Thenπ�
���

 is a 
topological group for all n≥ 1. 
 
Proof. In order to show that the multiplication is continuous, 
we consider the following commutative diagram 
 

 
 

where m��  is concatenation of n-loops, and m,, is the 

multiplication in π�
���

(X, x) 
 

Since ( p� ×  p�)-¹m� − 1 ¹ (U) = m� �
��(U) for every open 

subset U of π�
���

(X, x), it is enough to show that m, is 
continuous. Let ⟨K, �U⟩� be a basis ment in 
 

Hom((I�, I�), (X. x))Put 
 

K� =  �(t�,…….
�t� ) �t� … . . , t���,

��

�
� ∈ �K}          (24) 

 
And 

K� =  �(t�,…….
�t� ) �t� … . . , t���,

����

�
� ∈ �K}          (24) 

 

Then 

m� �
�� ��K. ��U⟩��� = �(f�,f��) f�, ∗ f� ,(K)�⊆} = ⟨K�. �U⟩� × ⟨K�. �U⟩�  (25) 

 

is open in Hom ((I�, I�), (X. x)) x Hom ((I�, I�), (X. x))and so 
m� � is continuous. 
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To prove that the operation of taking inverse is continuous, let 
K be any compact subset of I�" and put 
 
K� = {(t� … … . .�, t�) (t� … … , t�)ϵ �K}                                   (26) 
 
Clearly an t-loop a is in ∩���

� ⟨k�
�U�⟩� if and only if its inverse is 

in ∩���
� ⟨K���U�⟩� where ⟨k�

�U�⟩�are basis elements in Hom((I�, 
I�), (X. x)). Hence the inverse map is continuous. From now 
on, when we are dealing with to, by the notion we mean the 
isomorphism in the sense of topological groups. The following 
result shows that the topologital group is independent of the 
base point z in the path component [1].   
 
Cohomological Dimension of Random Graph Groups 
 
The cohomological dimension of Ar equals the size of the 
maximal clique in T. Recall that a clique in a graph is defined 
as a maximal complete subgraph. Theclique number cl(T) of a 
graph T is the maximal order of a clique in T. There are many 
results in the literature about the clique number of random 
graphs; we may interpret these results as statements about the 
cohomological di mension of graph groups build from random 
graphs, discovered that for fixed values of p the distribution of 
the clique number a random graph is highly concentrated in the 
sense that almost all random graphs have about the same clique 
number. These results were developed further by Bollobás and 
Erdős; see the monographs of B. Ballobás [4] and of N. Alon 
and J. Spencer [2]. We restate a result of a statement about 
cohomological dimension of random graph groups. Denote 
 
z(n, o) = 2log�n − 2 log�n + 2 log� (e /2 ) + 1         (27) 

 
where q = p-1. We assume that p is independent of n. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem 7.1 Fir an arbitrary e > 0. Then 
 

⌊z(n. p) − �∈⌋ ≤ cd(A�
�) ≤ ⌊z(n. p) + �∈⌋�          (28) 

 
asymptotically almost surely (a.a.s). In other words, the 

probability that a graph T∈G (∆�
(�)

, p) does not satisfy 
inequality (10) tends to zero when n tends to infinity. Here⌊�x⌋� 
denotes the largest integer not exceeding r. We may assume 
that ∈< 1/2; then the integers ⌊z(n, p) −��∈⌋ and ⌊z(n, p) +��∈⌋ 
either coincide or differ by Thus, according to Theorem 3.2, 
the cohomological dimension cd(Ar) for a random graph I 
takes on one of at most two values depending on n. and p, with 
probability approaching 1 as n→ ∞  [4].  
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