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Abstract 
 

This paper presents the numerical modeling of a piezoelectric actuator. The vibro-elastic piezoelectric actuator has the layered structures. 
Applying the equivalent parameters based on the plate/shell theories to the multilayered structures, it is possible to investigate the geometric and 
material characteristics of multilayered systems and estimate their structural performances. And the optimization designs for the geometric 
dimensions or material properties of multilayered systems on the layered model can easily be achieved. 
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INTRODUCTION 

 
The multilayered systems are commonly used in macro-scale or micro-scale applications such as active structural damping or 
excitation and precision positioning systems. The formulations of actuator configurations which are composed of the piezoelectric 
layers and non-piezoelectric layers are very important for the conceptual design. The geometric configuration of the layered 
system is very important for the structural design with low cost, high performance and quality. Particularly, some layered systems 
will be designed to minimize weight and to achieve a high stiffness such as sandwich beams or plates. For the layered systems 
subjected to bending, the effective mechanical properties such as flexural stiffness can be determined using the rule of mixtures 
and are dependent on the layer configurations. These devices are sufficient for determining the quasi-static behavior of the system 
since the layers are relatively thin. For the development of multilayered systems, the main assumptions of plate/shell theories, 
which allow for transverse shear deformation effects, are that the displacements are small compared to the plate thickness, the 
stress normal to the plate mid-surface is negligible, and normal to the mid-surface remain straight but not necessarily normal to the 
mid-surface after deformation. Ross-Ungar-Kerwin equations (Ross et al., 1959), single element modeling based on variation 
asymptotical or symmetric theory (Agnes, 1995; Wang and Cross, 1999) and transfer matrix procedure (Nashif et al., 1985; 
DeVoe and Pisano, 1997; Hwang and Park, 1993; Oka et al., 1991) have been developed to describe the layered material 
treatment. This paper presents this effective approach to estimate the layer configurations and flexural stiffness of multilayered 
materials. The concept can be developed to describe the flexural stiffness of more complex multilayer configurations containing 
these materials, with different layer thickness and spaces and with symmetric or asymmetric layer distributions. It may be possible 
to estimate the physical and mechanical properties and multi-material multilayered structures.  
 

Theoretical considerations for the multilayered systems 
 
The theory of plates and shells (Ugural and Fenster, 1995) assumes that sections normal to the middle plane remain plane during the 
deformation and the normal stresses in z direction are small as shown in figure 1, hence strains in that direction can be neglected.  
 

 
Figure 1. Deformation of a plate in bending 
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With these two assumptions it is easy to see that the total state of deformation can be described as follows. From the assumption 

that the normal strain z  owing to vertical loading may be neglected, the local displacements in the direction of x , y  and z  

axes are, 
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It is clear that 2f  and 3f  represent, respectively, the values of u  and v  corresponding to 0z . Because of an in-plane 

strain, 032  ff . The stress components x , y  and yxxy    are related to the strains by Hooke’s law, which for a thin 

plate becomes, 
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The stresses distributed over the side surfaces of the plate, while producing no net force, do result in bending and twisting 

moments. These moment resultants per unit length are denoted by xM , yM  and xyM . The bending and twisting moments per 

unit length are, 
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Introducing into Eq. (3) the stresses given by Eq. (2), and taking into account the fact that 
 yxww ,

, we obtain 
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 is the flexural stiffness of the single plate. The relationship of the bending curvature with the bending 
moment can be given by,  
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Figure 2. General multilayered configurations 
 
The multilayered configurations are shown in figure 2 and since the layer thickness is much less than the overall plate curvature, 
the radius of curvature is approximately equal for each layer in the structure.. With the above assumptions of single plate, it is 
noted that both axial forces and moments at any cross section of the m-layer plate shown in figure 2 must sum to zero at 
equilibrium (Ugural and Fenster, 1995; Lee, 2004). 
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Under the identical bending moment, the radius of curvature is the same for the deformation behavior. [9] 
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Since the dissipation can be integrated over all layers, the equivalent critical damping ratio is yielding the following expression. 
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The structural damping is calculated as 
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The total strain at the surface of each layer can be given by superposition due to the piezoelectric effect, axial force and bending 
moment (Ugural and Fenster, 1995; Uchino, 1997). This surface strain can be given by eq. (9). The sign of the train due to bending 
will depend on whether the top or bottom face of the layer is under observation. 
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piezo in the linear constitutive equation above considers the transverse piezoelectric coupling coefficient d31 and the electric field 

across the thickness of the layer i
pE  for a piezoelectric material. The strain at the interface layer between the i-th and (i+1) 

shown in figure 2, the can be given by, 
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Collecting similar terms and placing the result into matrix form yields the expression. 
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where  AE  is the matrix consisting of ii EA and the Young’s modulus iE  can have the probabilistic distributions (Lee et al., 

2005) due to the manufacturing environments(   i
o

i EE  1 for the linear distribution, 
 eEE i

o
i for the exponential 

distribution, 
  
















11
1i

o
i EE for semi-empirical distribution),  T  is the vector of 1 ii tt  and  pE  is the 

vector of i
p

i
p EE 1 .  

 
Using eq. (7) and (12), the curvature yields, 
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From eq. (13), the deflection of a simple cantilever beam with constant curvature is calculated. 
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Applications to piezoelectric actuator 
 

 
 

Figure 3. Schematic configuration of dither spoke. 
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Figure 4. Bending configuration of dither spoke 

 
The tension and compression forces are created by the piezoelectric layers symmetrically bonded to the top and bottom surfaces of 
non-piezoelectric layer shown in figure 3, and depend on its geometric dimensions, piezoelectric properties and the electrical 
voltage V supplied to the piezoelectric elements (Vetrov et al., 1999), 
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where   is the relative dielectric permeability of the piezoelectric, 0  is the dielectric constant, Sc is the transverse section area of 

the piezoelectric elements, 
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V , ct  is the thickness of the piezoelectric element, , and 31d  is the 

piezoelectric constant. 
 
Under the micro operation condition of elastic metal actuator [13, 14], the piezoelectric attached to the elastic metal prevents the 
bending motion of elastic metal actuator due to the increased equivalent rigidity. Therefore, the optimal thickness dimension ratio 
between piezoelectric and elastic metal actuator has to be studied. Pressure-sensitive element is a cantilever type, which has the 
rotational angle and linear transverse deflection. The bending rigidity of bimorph element shown in figure 4 can be written as 
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The equivalent elastic modulus of bimorph element is given by. 
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where CE  is the elastic modulus of piezoelectric, ME  is the elastic modulus of metal, SE  is the elastic modulus connective 

seam,  
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Without the consideration of inertial force, the transverse deflection according to the length of elastic actuator can be written by. 
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Without the consideration of the rigidity increase due to the piezoelectric layers and connective seams, the total transverse 
deflection is given from. 
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elements for both sides of an elastic metal, the transverse deflection will be doubled. With the consideration of rigidity increase, 
the transverse deflections are given by, 
 

  












2

2 C
C

C

SCC

31

0 l
xl

t

ttt

IEd

VS
x М

Me


 ,

M

e
I

I
E

I

I
EEE C

М

S
SМ C , Clx 0   (24) 

 

    












2

2ε
C

SCМ

C

C

31

0 C

M

C

l
xl

t

ttt

EId

VS
lx


   

 











































Мe31

0 222
C

C
C

CC

C

SCМC

IE

l
xl

IE

l
ll

t

ttt

d

VS

M


, MEE  , lxlC    (25) 

 

3882                                         International Journal of Science Academic Research, Vol. 03, Issue 05, pp.3877-3884, May, 2022 



Therefore, the transverse deflection considering the rigidity increase at lx   is given by. 
 

 
































М

C
C

М

CSCМC 2

2

2

e

2

31

0

IE

l
ll

IE

l

t

ttt

d

VS
l

MC


                        (26) 

 

 cl  in eq. (25) can be given from eq. (14). 
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For investigating the rigidity effects of bimorph piezoelectric actuator, the fundamental design parameters are shown in table 1. 
The material properties of components and the piezoelectric material properties are shown in table 2 and 3. The important 
characteristics due to the piezoelectric rigidity effects have influences on the angular displacement of mechanical dither. From the 
results, the feasible geometric dimensions of piezoelectric element can be studied and reflected in the fabrication of mechanical 

dithers. On the condition of 
U

mm

L

m ttt  , the angular displacements of the mechanical dithers are calculated. Under the 

electrical signals, the angular velocities are investigated through the relative angular displacement sensor. Each mechanical dither 
is designed for being operated at intervals of 20 Hz. Using the numerical equations, the angular displacement of mechanical 
dithers are compared in table 4. In table 4, the calculated resonant frequencies from numerical equation are within the relative 
errors of 1 %.  
 

Table 1. Fundamental design parameters of bimorph actuator 
 

Design parameter Value (mm) 

Center of piezoelectric element ( 1a ) 5.1
2

Cl  

Length of metal pressure-sensitive element ( llM  ) 21 

Thickness of metal pressure-sensitive element (
Mt ) 2.94, 3.08, 3.22 

Width of metal pressure-sensitive element (
Mw , 

Cw ) 5 

Thickness of piezoelectric element (
Ct ) 0.3 ~ 0.7 

Length of piezoelectric element ( Cl ) 
0.25 Ml  ~0.9 Ml  
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Table 2. Mechanical material properties of components 
 

Materials Elastic modulus (GPa) Poisson’s ratio Density (kg/m3) 

Metal 144.9 0.29 8110 
Piezoelectric element 40 0.30 7700 
Connective seam 15 0.31 1800 

 
Table 3. Piezoelectric material properties of piezoelectric layer 

 

Material properties PZT 

Piezoelectric constants (10-12 m/V) 
                             d33 
                             d31 
                             d32 

 
-250 
2500 
       0 

Relative permittivity e/e0 
(e0=8.854x10-12 F/m) 

 
5500 

 
Table 4. Deflection of mechanical dither spokes of various thicknesses 

 

Type Thickness 
Mt  (mm) Test deflection (mm) Deflection (mm) using eq. (24) Deflection. (mm) using eq.(27) 

1 2.94 2.595 2.591 2.596 
2 3.08 2.449 2.443 2.454 
3 3.22 2.300 2.291 2.304 

 
Conclusion 
 
This paper presents the general modeling method of multilayer structure with m-layers. A model describing the deflection of a 
piezoelectric multi-morph structure can be derived by using the basic mechanics principles of static equilibrium and strain 
compatibility between the interfacial layers. Using this formulation, the layer selection and distribution is easy in designing the 
layered model. The change from one configuration to another can be represented by a change of the related modification of the 
assignments of equivalent material parameters to the different sub-layers. And, the geometric dimensions such as thickness, width 
and height in the materials can be studied for the improvement of static or dynamic stiffness. In the numerical equations, the 
nominal material properties of piezoelectric elements and seam elements are generally used, but they have the probabilistic 
distributions of material properties. In the consideration of the probabilistic distributions of material properties, the presented 
equations are available for the structural characteristics. 
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