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Abstract 
 

In this work, we have used the infinity-norm penalty function to select the best-fit model parameters which define a system of first order ordinary 
differential equations that describe the interaction between two corrosion penetration data over a time interval. For this particular problem, the 
estimated best-fit model parameters are the intrinsic growth rate of the first corrosion population which has the value of -0.5092 followed by the 
intraspecific coefficient which has the value of -0.1570. The other model parameters are estimated under some simplifying assumptions. The 
precise steady-state solutions are (0,0), (0, 0.3500), (3.2433, 0) and (1.2817, 2.5664). 
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INTRODUCTION 

 
The statistical analysis of binary Al-Sn alloy systems using 
model equations has attracted the interest of many physicists 
(Ekuma et al., 2007). Their major conclusion was that, the 
modeled corrosion penetration rate values generated using the 
developed model equations were in agreement with the 
experimental values. Which numerical method can we use to 
select the best-fit model parameters that define the interacting 
system of corrosion penetration data? In the vast literatures of 
corrosion data analysis (Ekuma et al., 2007; Ekuma et al., 
2011; Ekuma and Idenyi, 2007; Ekuma et al., 2007; Idenyi and 
Neife, 2005; Idenyi et al., 2004;Idenyi et al., 2006; 
Onuchukwu, 2004; Troost et al., 2007; Ulick, 1976; Zhang and 
Lyon, 1992; Zoccola et al., 1978), it is rare to find previous 
research outputs which have used a numerical selection 
method to select best-fit parameters. 
 

METHOD OF SOLUTION 
 
In this study, we will attempt to apply the infinity-norm 
penalty function to select the best-fit parameters on the 
simplifying assumption of finding the local minimum from a 
monotonic sequence of infinity-norm values. This powerful 
and challenging selection method of model parameters can 
provide further insights in the capacity building of forecasting 
analysis, sensitivity analysis, stabilization of the mathematical 
model of two interacting corrosion penetration data, fractal 
analysis due to environmental perturbation and stochastic 
analysis of the same interacting systems to mention a few. In 
sections 2 and 4, our results will be presented and interpreted. 
In section 3, a typical corrosion interaction model of Lotka-
Volterra type is formulated. In section 5, our core results are 
discussed while in section 6, our key observations of this 
numerical study and further extensions are pointed out. 
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Results 1: Selection of model parameters 
 
Following Ekaka-a (2009), we have selected the intrinsic 
growth rate a and used the infinity-norm penalty function to 
select the intraspecific coefficient b of the first corrosion 
penetration rate population. In this section, as inthe  previous 
analysis, we shall find those logistic model parameters which 
minimize the infinity-norm sequence of values. Our 
calculations are presented below. What do we want to find 
out? We are interested to find a list of best-fit model 
parameters of our logistic model that will minimize the 
agreement between the provided model and our simulated 
model (Ekuma et al., 2007). Our calculations are presented 
next. 
 
Table 1. The calculation of the local minimum using the infinity-

norm penalty function 
 

Parameter Calculation of the infinity-norm local minimum 

N b ss a Infinity-norm 
1 -0.1696 3.0024 -0.5092 0.5714 
2 -0.1570 3.2433 -0.5092 0.4062 
3 -0.1462 3.4829 -0.5092 0.4094 
4 -0.1368 3.7222 -0.5092 0.4123 
5 -0.1285 3.9626 -0.5092 0.4171 
6 -0.1211 4.2048 -0.5092 0.4219 
7 -0.1146 4.4433 -0.5092 0.4281 
8 -0.1087 4.6845 -0.5092 0.4330 

 
From Table 1, we observe that our expected local minimum 
0.4062 occurs when the value of the intraspecific coefficient b 
is -0.1570. Our next task is to grid around this value of b = -
0.1570 until we can find a smaller local minimum if possible 
(see Table 2 below). From these series of infinity-norm penalty 
function calculations, it is impossible to find a smaller local 
minimum than the first local minimum value of 0.4062. To 
investigate this challenging problem, we would proceed to 
check if we can find a smaller local minimum within a 
different parameter space of intra-specific coefficient and 
steady-state values. From this scenario, it is impossible to find 
a smaller local minimum than the first local minimum value of 
0.4062. 



Table 2. The calculation of a further gridding around the local 
minimum value of 0.4062 

 

Parameter Calculation of the infinity-norm penalty function 

N b ss a Infinity-norm 
1 -0.1460 3.4877 -0.5092 0.5699 
2 -0.1461 3.4853 -0.5092 0.5685 
3 -0.1463 3.4805 -0.5092 0.5670 
4 -0.1464 3.4781 -0.5092 0.5656 
5 -0.1465 3.4758 -0.5092 0.5641 
6 -0.1466 3.4734 -0.5092 0.5627 
7 -0.1467 3.4710 -0.5092 0.5613 
8 -0.1468 3.4687 -0.5092 0.5598 
9 -0.1469 3.4663 -0.5092 0.5584 
10 -0.1470 3.4639 -0.5092 0.5570 

 
Next, we consider other parameter spaces of parameter b and 
steady-state values. By a similar calculation, we obtain Table 3. 
 

Table 3. The calculation of a further gridding around the local 
minimum value of 0.4062 

 

Parameter Calculation of the infinity-norm penalty function 

N b ss a Infinity-norm 
1 -0.1685 3.0220 -0.5092 0.5556 
2 -0.1684 3.0238 -0.5092 0.5541 
3 -0.1683 3.0255 -0.5092 0.5527 
4 -0.1682 3.0273 -0.5092 0.5513 
5 -0.1681 3.0291 -0.5092 0.5499 
6 -0.1680 3.0310 -0.5092 0.5485 
7 -0.1679 3.0328 -0.5092 0.5470 
8 -0.1678 3.0346 -0.5092 0.5456 
9 -0.1677 3.0364 -0.5092 0.5442 
10 -0.1676 3.0382 -0.5092 0.5428 
11 -0.1675 3.0400 -0.5092 0.5414 

 
So far, it has not been possible to find a smaller local minimum 
than 0.4062. Therefore, we would proceed to check if we can 
find a smaller local minimum with a different parameter space 
of intraspecific coefficient and steady-state values. Our final 
infinity-norm penalty function calculations in a bid to find a 
smaller local minimum are presented below (see Table 4).  
 
Even in this set of intraspecific coefficient and steady-state 
values, we report that it is impossible to find another smaller 
local minimum than the first local minimum value of 0.4062. 
Having systematically embarked upon searching for the local 
minimum using the infinity-norm penalty function selection 
method, we report that a further local minimum cannot be 
found. Therefore, the best model parameters from these several 
logistic candidate models are a = -0.5092 and b = -0.1570. 
 
Table 3. A different calculation of a further gridding around the 

local minimum value 0.4062 
 

Parameter Calculation of the infinity-norm penalty function 

N B ss a Infinity-norm 
1 -0.1685 3.2412 -0.5092 0.4066 
2 -0.1684 3.2392 -0.5092 0.4078 
3 -0.1683 3.2371 -0.5092 0.4090 
4 -0.1682 3.2351 -0.5092 0.4102 
5 -0.1681 3.2330 -0.5092 0.4114 
6 -0.1680 3.2310 -0.5092 0.4126 
7 -0.1679 3.2454 -0.5092 0.4063 
8 -0.1678 3.2474 -0.5092 0.4063 
9 -0.1677 3.2495 -0.5092 0.4063 
10 -0.1676 3.2516 -0.5092 0.4064 
11 -0.1675 3.2537 -0.5092 0.4064 
12 -0.1675 3.2558 -0.5092 0.4064 
13 -0.1675 3.2578 -0.5092 0.4064 
14 -0.1675 3.2599 -0.5092 0.4065 

 

MATHEMATICAL FORMULATION 
 
Based on the infinity-norm penalty function (Ekaka-a, 2009; 
Ekuma et al., 2011), a typical corrosion interaction model will 
take the following form. 
 

             (1) 

 

             (2) 

 
where the initial conditions are  and 

. Here, the calculated value  is -0.5092 

while the infinity-norm penalty function selected value of  is -

0.570. The parameter  has an assumed value of -0.12. The 
intrinsic growth rate has a value of -0.4875 for the second 
population which is assumed because the first population 
interacts similarly with the second population. The parameter  
having a value of -0.08 is assumed. On the basis of the same 
assumption, the value of  is -0.15. 
 
Results 2: characterization of steady state solutions 
 

By equating  and  to zero and solving these non-linear 

equations analytically for the appropriate values of  and , 

when , , , 

, , , we will obtain the 

following steady-state solutions such as , , 

 and . 

 
DISCUSSION OF RESULTS 
 
In this study, we have calculated four steady-state solutions 
which have the following implications. For the trivial steady-
state solution, the two populations of corrosion penetration 
systems will be driven into the environmental risk of 
extinction. For the first border steady-state solution (0, 
3.2500), the first corrosion penetration population will be 
driven into extinction while the second corrosion penetration 
population will survive at its carrying capacity or maximum 
population value of 3.2500. For the second border steady-state 
solution (3.2433, 0), the first corrosion penetration rate 
population will survive at its carrying capacity or value of 
3.2433 while the second corrosion penetration population will 
be driven into extinction. The only positive and unique steady-
state solution (1.2817, 2.5664) specifies that a population size 
value of 1.2817 of the first population and a population size 
value of 2.5664 of the second population are required for these 
two populations to co-exist in the context of competition 
interaction. 
 

CONCLUDING REMARKS AND FURTHER RESEARCH 
 
In this study, we have found four appropriate steady-state 
solutions which have consistent qualitative characteristics to 
the four steady-state solutions which we calculated in our 
previous work and consistent with other reported studies 
(Ekaka-a, 2009; Ford and Norton, 2009). A further 
characterization of the stability of the steady-state solutions 
which we have found in this study is proposed. The steady-
state solutions can support further insights into the bifurcation 
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analysis (Ford and Norton, 2009), stabilization of this 
population system, parameter ranking or sensitivity analysis 
and stochastic analysis which we did not tackle in this present 
analysis. 
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