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Abstract 
 

This paper examines the stabilization of nonlinear differential systems which can be used to model pest interaction. We proceed to apply 
methods from optimal control theory and design the feedback control by using the Riccati equation to stabilize this system of proposed model 
equations. Our numerical method will be to test two interesting examples which come from entomological applications. The results show that as 
the pest population density varies monotonically, calculated steady-states are stabilized using appropriate optimal control techniques. 
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1. INTRODUCTION 
 

In the works of Barbu et al. (2005) and other several papers 
cited by these authors, the concept and theory of stabilization 
of unstable steady state for semilinear parabolic equations has 
been established within the mathematical sciences. 
Analytically, we can set up an appropriate algebraic Riccati 
equations from which we can solve and be able to construct a 
controller which stabilizes our unstable steady state. Naidu 
D.S.C (2003) and Patten, (1975). We did not pursue this line of 
analysis in this paper as we prefer our numerical simulation 
techniques of checking for the stabilization of unstable steady-
state. Our method can be replicated for any other model 
parameters and subsequently minimize the possibility of 
incurring approximation errors due to lengthy algebraic 
calculations. The importance of this technique has been 
demonstrated in other fields of study (Naidu, 2003), Basak, 
2001). In this paper, we want to find out if the unstable steady-
state for the system of model equations of ecological 
competition between two plant species (Ekaka-a, 2009, Ford et 
al., 2010) can be stabilized by constructing an appropriate 
controller (Barbu et al., 2005). In our previous and recent 
experimental analysis Ekaka-a,2009, Ford et al., 2010; Barbi et 
al., 2005) we know that ecological systems behave like other 
real world system which are expected to run over a longer 
period of time to enable clearer qualitative characteristics to be 
observed. Therefore, an interesting problem in this context is 
that of stability of ecological systems. In particular, knowledge 
about the steady-state solutions and stability may provide vital 
information for ecological studies in predicting the future 
states of the plant community (Ford et al., 2010). Feedback 
control laws are also important in ecological studies as they 
can be used to control the outcome of competition between 
interacting populations described by a system of coupled 
nonlinear ordinary differential equations. We propose to use 
simple linear and nonlinear feedback control schemes to 
demonstrate some interesting ecological characteristics of the 
two interacting plant species. In contrast, without control, one 
of the plant species is more likely to be driven to extinction.  
 

 

*Corresponding Author: Nafo Ngia Matthew, 
Department of Mathematics, Rivers State University, Nkpolu-Oroworukwo, 
Port Harcourt, Rivers State, Nigeria. 

 

Since experimental errors are usually characteristic of 
biological experiments, feedback controller laws can provide 
useful insights as the lack of precise measurement, of the state 
variables can be compensated for by including certain 
parameters in our feedback controller which would provide 
useful ecological insights. Unstable dynamic system can 
present interesting problems to scientists and mathematicians 
(Barbu et al., 2005). In this paper, we would adopt the 
theoretical definition of stabilization as used in the work of 
these authors, that is, a controller can be constructed and used 
to stabilize a given unstable system. This technique has 
important applications in ecological studies in terms of 
ecosystem monitoring and decision making (Arnoldand Laub, 
1984; Patten, 1975). It is also interesting to acknowledge the 
fact that ecosystems are rich in feedback and since feedback is 
the basis of control, we can conceptualize ecosystems as 
natural controls system (Arnold, 1984). Several references 
relating to biological control were cited by these authors for 
interested readers on a further application of control theory. 
Within the ecological literature, ecosystem stability is an 
important feature of ecosystems which has made key 
contributions (Hannon, 1986; Seppelt et al., 1999; Thau, 
1972). According to these authors, an ecosystem is said to be 
stable if all independent variables within the dynamical system 
return to the starting steady-state after a small perturbation 
from their steady-state. How fast these variables would return 
to their steady- state is called the concept of resilience. On the 
contrary, if a dynamical system is unable to return to its 
steady-state, it is unstable and would have no resilience. In this 
paper, it is the ecosystem with no resilience that we are 
attempting to stabilize in order to reach a resilient ecosystem 
which has relevant ecological applications. What are the 
methods and results which can be found in the literature about 
the stabilization and control of interacting populations? In the 
literature (Barbu et al., 2005) have defined and proved 
important results about stabilizing some typical semilinear 
parabolic equations. By using the finite element scheme, these 
authors have derived control laws to stabilize some examples 
of semilinear parabolic equations. Other researchers have used 
the concept of control theory to tackle the control of interacting 
populations. For example (Vincent, 1972), has used an integral 
quadratic cost functional to obtain a quasi-optimum feedback 



control law for two competing species whose dynamics are 
described by the well-established mathematical formulation of 
Volterra’s competition equations. Next (Vincent et al., 1973) 
also applied optimal control theory which has an integral linear 
cost functional to control a prey predictor system described by 
the Lotka Voterra model equations. Similarly Goh et al. (1972) 
and Yan et al. (2009) have studied optimal control or prey- 
predator systems which are described by the Lotka Volterra 
equations. More recently Rafikov (2008) have applied the 
methods from optimal control theory and from the theory of 
dynamical systems to the mathematical modelling of biological 
pest control. What are the applications of our present study in 
ecological studies? The key contribution of our present work is 
to numerically estimate the depletion rates of two plant species 
by stabilizing unstable interacting ecological populations. 
Comparisons of these depletion rates can provide useful 
information to guide against severe depletion rate which other 
studies are yet to estimate as far as we know. These results 
would be of immense application in ecosystem monitoring and 
decision making against species extinction which would 
enhance the ideas and norms of ecological services in the 
sustainability of human life. Since our model equations of 
competition interaction are unstable, if they are to accurately 
model real ecosystems, it is inevitable to find the mechanisms 
of stabilization Hannon (1986). Recently, Ford et al. (2010) 
introduced a mathematical model of plant species interaction in 
a harsh climate, they considered whether interactions between 
the species change in character as environment change. The 
model is constructed based on the notion of a summer season 
when the plants grow, followed by a winter season when there 
is no growth but when the plants are subject to the effects of 
events such as winter storms, see also Ekaka,-a (2009). 

 
The model of competition has the following form: 
 
��

��
 = ��y(t)(1-b1�(t)-g

�
z(t)                        (1.1) 

 
��

��
 = ��z(t)(1-��z(t)-g

�
�(t)                                      (1.2) 

 
Here g and z denote the population of two plant species at time 
t. Here the non-negative constants ai bi,gi, i = 1, 2, arc given 
respectively, as the intrinsic growth rate, the intra- species 
competitive parameter and the inter- species competitive 
parameter. These model equations have four steady-state. 
 
y = 0, z = 0 
 

y = 0, � =  
�

��
 

 

� =  
1

��

 � = 0 

 

� =  
�� −  ��

���� − ����

,    � =  
�� − ��

���� − ����

 

 
The issues on how to choose the parameter values ai, bi, gi, i 
=1,2 such that the model is reasonable were also discussed, see 
also Ford et al (2010). They noticed that although the variation 
in ai,bi,gi, i = 1,2 between the species is quite small, the 
behavior of two such close species are much different over a 
growing season of several years length. The population of one 
species may die away and would become extinct over a 
growing season of several years length. They pointed that 

small perturbation in the environment could have quite 
devastating and unexpected results for ecosystems. Some 
steady-states are stable, but some are not. It is very interesting 
to design the controller such that the unstable steady-state can 
be stabilized. There has been significant contribution recently 
to consider how to stabilize a nonlinear system numerically by 
using Riccati equation (Yan and Ekaka-a, 2010). Also Barbi 
(2005) considered how to stabilize a semilinear prarabolic 
equation numerically. This work has been extendedto the 
stabilization of the semilinear system and Navier-Stokes 
equation (Yan et al., 2008; Yan and Tang, 2009). The purpose 
of this paper is to consider the stabilization of the nonlinear 
system (1.1) – (1.2) by using Riccati equation, numerically. 
Our present method is structurally differentfrom the method of 
(Yan and Ekaka-a (2010).We first linearize the nonlinear 
system at the unstable steady-state. Then we design the 
feedback controller for the linearized system by using th 
Riccati equation. Then we apply the feedback controller to the 
original nonlinear system. We use the backward Euler method 
to solve the feedback control system and give the error 
estimate. We apply our numerical scheme to two different 
models. For each model, we consider how to stabilize the 
unstable steady states numerically. The paper is organized as 
follows. In Section 2, we consider the technique of 
stabilization of steady-states for a nonlinear system. In Section 
3, we consider the method of solution for Stabilizing equations 
1.1 and 1.2. In Section 4, we consider two examples to 
illustrate the technique of stabilization of unstable steady-stales 
and give some results whereas our results are briefly discussed 
in section 5. 
 

2. MATHEMATICAL FORMULATION: STABILIZATION 
OE STEADY-STATES FOR A NONLINEAR SYSTEM 
 
Let us consider the steady-states of the following system of 
nonlinear first order differential equations 
 
��

��
 = y(t)(a1- b1 y(t)-��z(t)                        (2.1) 

 
 
��

��
 = z(t)(��- b1z(t) - ��y(t)           (2.2) 

 
with initial conditions y(0) = yo>0, z(0) = z0> 0. Here ai, bi, ci,i 
= 1, 2 are positive constants. The steady-states (ye, ze) satisfy 
 
ye (a1– b1 ye – c1ze) = 0                                      (2.3) 
 
ze(�� − ���� −  �� �� =  0          (2.4) 
 
which implies that there are four steady-states 
 

(ye, ze) = (0,0), (ye, ze) =  (0, 
��

��
) 

 

(ye,ze) = (
��

��
, 0) and (ye, Ze) = (

����� ����

����� ����
, 

����� ����

����� ����
 ) 

 
To determine the stability of the steady-state (ye, ze), we need 
to consider the. linearized system (2.1) - (2.2) about (ye ze). 
Denote 
 
��

��
 = F (y,z) 

 
��

��
 = G (y,z) 
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By using Taylor series, we have 
 
F(y,z) = F (ye + ze) + 

¶ � (�,�)

¶ �
,(y-ye) + 

¶ �(�,�)

¶ �
 (z –ze) + higher order terms 

 

G(y,z) = G (ye + ze) + 
¶ �(�,�)

¶�
 (y-ye) + 

¶ �(�,�)

¶ �
 (z –ze) + higher order terms 

 

Hence we got the linearized system of (2.1) - (2.2) 
 
��

��
=

¶ � (�,�)

¶ �
(y-ye) + 

¶ � (�,�)

¶ �
 (z –ze)          (2.5) 

 
 
��

��
=

¶ � (�,�)

¶�
 (y-ye) + 

¶ � (�,�)

��
 (z –ze)          (2.6) 

 
Similarly, y – ye and z – ze by Y and Z separately and denoting 
 

u = �
�

�
�A = �

¶ � (�,�)

¶ �

¶ � (�,�)

¶ �

¶ � (�,�)

¶ �

¶ � (�,�)

� �

� 

 
We have 
 
��

��
 = Au, u(0) = uu,           (2.7) 

 

where u0 = �
�� ��

�� ��
� 

 
Lemme 2.1  (Yan and Ekaka-a, 2011): Assume that all 
the eigenvalues of A arc negative, then the solution of (2.7) 
tends to the steady state (ye, ze) as t ∞for some suitable 
initial value u0 = (y0– ye, zo - ze). 
 
This lemma is only stated here without proof. For the proof see 
the work of Barbu et al (2005) and their related papers. 
 
Remark 2.1.  If A has a positive eigenvalue, then the 
steady state (ye, ze) is notstable, i.e., (y(t), z(t)) will not tend to 
(yc, ze) as t ∞Then we will use the feedback control to 
stabilize the steady-state. 
 

3. METHOD OF SOLUTION 
 
Equations (1.1) and (1.2) show that the dependent variables arc 
highly nonlinear of which their solutions are not easily 
tractable. In the context of this paper, a global approach to 
such highly nonlinear and coupled ordinary differential 
equations is the stabilization method. A few of the standard 
results of stabilizing an unstable steady-state are stated next for 
the purpose of clarification and their application in our 
subsequent mathematical analysis. 
 

In this paper, we will only state the following important 
theorems without proof, for the proofs see the approach in Yan 
et al (2005), Yan and Ekaka-a (2011) 
 
Theorem 3.1 (Yan and Ekaka-a, (2011): Assume that (ye, 
ze) is unstable, then there exists 
 

V: (0,∞)  R2 
 
such that 
 

��

��
 = Au + Bu, u (0) = u0           (3.1) 

is exponentially stable at (0, 0). 

Here 
 
V = - R-1B*u 
 
and  satisfies the Riccati equation 
 
A*  + A - BB* + Q = 0 
 
Here R = I and Q isany positive definite matrix and  

B = �
1
0

� �
1
0

� or �
1
0

� 

 
More precisely, there  is p > 0, such that for all u0: ‖��‖<, 
there exists a unique solution 
 
u C1 (0, + ∞, R2) such that, with some > 0 
‖� (�)‖  ≤ Ce-u‖��‖ 
 

Theorem 3.2 (Yan and Ekaka-a, 2011): Assume that �
��

��
� is 

unstable then 
 

V = - R-1 B*�
� − ��

� − ��
� 

 
will stabilize exponentially the nonlinear system 
 
�

��
�
�
�

� = �
�(�, �)
� (�, �)

�  + BV(t) 

 

More precisely, there exist > 0 such that for all �
��

��
�: ����

��
� −

�
��

��

��<, there exist a unique solution �
�
�

� ∈C1 (0, ∞,2), such 

that, with some constant C and > 0 
 

��
��

��
� − �

��

��
��< Ce-u��

�
��

�� 

 

4. SOME EXAMPLES 
 
In this section, we shall consider the following examples 
 
4.1. Example 1: The first example is a system of nonlinear 
first order ordinary differential equations (see Rafikov 2008) 
 
���

��
 = x1(t)(y1 – a11)x1(t) – a12x2(t)          (4.1) 

 
���

��
 = x2(t) (–y2 a21x(t)           (4.2) 

 

Here x1 and x2represent the population densities of the prey 
and predator, where x1 = 15 is the initial density of caterpillar 
population and x2 = 2 is the initial density of parasitoid 
population. These starting values are chosen for the purpose of 
our numerical stabilization of optimal control analysis. The 
positive parameters for this system of equations are 
 

g
�
 = 0.17, g

�
= 0.119,    a11 = 0.0003825, a12 = 0.000935, a21 = 0.000935. 

 
What do we want to find out? In this example, we are 
interested to analyze the following pest control problem 
 
���

��
 = x1(t)(1 – a11 x1(t) – a12x2(t)                                     (4.3) 

 
���

��
 = x2(t)(-2 +  a21x1(t) + u          (4.4) 
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Following Rafikov (2008) the aim of the pest control strategy 
is to maintain the pest population at level xle = xd by using a 
control uc. In our paper, we have adapted the parameter xd 
which is called a pest population density and it is assumed to 
be below the economic injury level. 
 
To characterize the steady-state solutions of this one prey one 
predator Lotka- Volterra model, we have solved the above 

system given x1e = xd to obtain  x2e = 
g�� ������

���
 and ue=x2e(g�

−

 a21x1e). 
 
This unique system of entomological interaction is fully 
stabilizable because the rank of the observation matrix is 2 
using the concept of optimal control theory (Naidu 2003). 
Our first experimental analysis is based on the following 
parameters: 
 
xle = 20 pests/m2, x2c = 173.6364, ue = 17.4157, T final = 800 
days, x10 = 15 
 
x20 = 2, the step size k = 0.1. After several variations of final 
times and initial starting values which did not provide 
meaningful convergence to steady-state results, we can 
stabilize the above pest control problem for this set of 
parameters. Our first main result is graphically presented 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, we shall consider the situation when the pest density 
threshold level is 10 pests/m2. Here, our calculated steady-state 
is (10, 177.7273, 19.4878). By choosing the following 
parameters Xe = 10 pests/m2, x2e=177.7273, uc = 19.4878, 
Tfinal = 1200 days, x10 = 15, X20 = 2, the step size k = 0.1. By 
using our technique, we observe that our steady-state can be 
stabilized. Our second result is presented in the following 
graph 
 
4.2.   Example 2:  In this example, we will consider an 
interesting example of pest-natural enemies interaction model 
(Guo and Chen, 2009). The uncontrolled model without 
impulsive harvest parameters was formulate by the following 
system of first order coupled differential equations. 
 
��

��
 = x(t)(a – by(t)           (4.5) 

 
��

��
 = y(t)(cx(t) – d)           (4.6) 

 
where x(t) represents the number of pests at time t and y(t) 
represents the number of natural enemies at time t. It is worth 
mentioning that natural enemies make an important 
contribution in limiting potential pest populations (Rafikov 
2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. Uncontrolled and Controlled Solution Trajectories of Steady-Stale (10.0001, 177.7273) 
 

Table 1. Calculation of convergence of steady-states over a time interval 4.2 
 

Examples Other Results 

No k xd x1c x2c ue T final x10 x20 Point 
3 0.1 18 18 174.45 17.82 500 15 2 (18,174.45) 
4 0.1 16 16 175.27 18.23 800 15 2 (16, 175.27) 
5 0.1 14 14 176.09 18.65 900 15 2 (14, 176.09) 
6 0.1 12 16 176.90 19.06 1000 15 2 (16, 176.90) 
7 0.1 15 15 175.68 18.44 1000 15 2 (15, 175.68) 
8 0.1 25 25 171.59 16.408 900 15 2 (25, 171.59) 
9 0.1 35 35 167.5 14.45 700 15 2 (35, 167,5) 
10 0.1 45 45 163.409 12.57 600 15 2 (45, 163.40S 

 

 
Figure 1. Uncontrolled and Controlled Solution Trajectories of Steady-State (20.0000, 173.6364) 
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Table 2. Calculation of convergence of steady-states over a time interval 
 

Examples Other Results 

No k PP1 . Xlc X2c Uc T final x |() X20 Point 
Z.  0.1 0.8 0.8 2.5 0.3 100 15 2 (0.8, 2.5) 
3 0.1 0.85 0.85 2.5 0.2875 100 15 2 (0.85, 2.5) 
4 0.1  0.9 0.9 2.5 0.275 100 15 2 (0.9, 2.5) 
5 0.1 0.95 0.95 2.5 0.2625 100 15 2 (0.95, 2.5) 
6 0.1 0.5 0.5 3.3333 0.5 100 15 2 (0.5, 3.3333) 
7 - 0.1 0.8 0.8 3.3333 0.4 100 15 2 (0.8, 3.3333) 
8 0.1 0.85 0.85 3.3333 0.3833 100 15 2 (0.85,3.3333) 
9 0.1 0.85 0.85 5 1.5757 100 15 2 (0.85,5) 
10 0.1 1.5 1.5 5 1.25 100 15 2 (1.5, 5) 

 

 
Figure 2. Uncontrolled and Controlled Solution Trajectories of Steady-Stale (10.0001, 177.7273) 

 

 
Figure 3.  
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Our aim is to attempt to construct a stabilizer which can 
stabilize the corresponding control problem using our optimal 
control numerical technique. Here, we will like to analyze the 
following Lotka-Volterra initial control problem 
 
��

��
 = x(t)(a – by)(t)                        (4.7) 

 
��

��
 =  y (t)(cx(t)d)+ u                        (4.8) 

 
Under the following simplifying assumptions 
 
 The prey in the absence of any predation will tend to grow 

unboundedly in a Malthusian pattern; this pattern of growth 
is reflected in the ax term (Guo and Chen, 2009) 

 The impact of predation would be to reduce the prey’s per-
capita growth rate by a term which is proportional to both 
the prey and the predator populations' this pattern of 
growth is reflected in the bxy term (Guo and Chen, 2009) 

 In the absence of any prey, the predators death rate would 
tend to decay exponentially which is reflected in the dy 
term (Guo and Chen, 2009), 

 The prey’s effect to the predator’s growth rate is cxy; what 
this pattern of growth means is that the preys contribution 
would be proportional to the available prey as well as to 
the size of the predator population (Guo and Chen, 2009). 

 

By solving the above system of equations in Example 2 at 
steady-state condition, we will obtain the steady-state (xe, ye) 

where xe = per population, ye= 
�

�
 

 

Here, uc - ye(d - cxc)this this study, the notation pre 
population is called the pest population level (Rafikov, 2009).  
 

Next, we are interested to investigate the extent of stabilizing 
the control problem using the same optimal control technique 
applied in Example 1. The next key result is presented below 
for both the uncontrolled and controlled scenarios. Here we 
have used the following parameters to check for the 
convergence of the steady-state: a =5, b = 2, c = 0.1, d = 0.2, xc 
= 0.5, ye = 2.5, uc = 0.3754, x(0) = 15 y(0) = 2, Tfinal = 1000 
These further variations of Example 2 show the convergence to 
calculated steady state which reinforce similar ecological 
insights which we have mentioned in Example 1. 
 

5. DISCUSSION OF RESULTS 
 
In these two experimental examples, we have found that as the 
pest population density varies monotonically, calculated 
steady-states can be stabilized using our optimal control 
technique. In these scenarios, we have been able to maintain 
the pest population at a level Xi = xd by using a control ue 
where xd is a pest population density below the economic 
injury level. Our set of results further authenticate one of the 
dominant short-term pest control strategies which are cost 
effective and can provide further insights into efficient agro-
ecology functioning as a result of preserving biodiversity. 
What is the significance of this analysis in entomogical study? 
When the pest population is below the economic injury level, it 
means that the agro-ecology is functioning efficiently as a 
result of preserving biodiversity. In this situation natural 
enemies of insect pests such as predators, parasitoids, and 
pathogens (Rafikov 2008) are able to keep the population of 
pest in check and there will be no need to apply pesticides. 
Hence, our method of controlling the pest population by 

designing a controller with which to stabilize a biological pest 
population is attractive and cost effective. Despite these key 
contribution pest population densities are never always 
constant due to disturbances in the ecological equilibrium. 
When this happens, some control must be initiated to return the 
expected ecological balance to equilibrium and thus enable 
natural enemies to continue their work. 
 

6. CONCLUDING REMARKS AND FURTHER RESEARCH 
 
We have systematically achieved in this study that for an 
arbitrary pest population density which is taken to be below the 
economic injury level, the chosen steady-state solution for the 
posed problem can be stabilized. We would expect these series 
of results to provide insights for pest control intervention 
strategy subject to a few error estimates which were not 
defined and analysed in this present paper. 
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