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Abstract 
 

For many years. cardiac diseases continue to be a significant global health concern, necessitating innovative approaches to early detection and 
continuous monitoring. Currently cardiac devices are formed in bulky and rigid form, which consists of battery, electrode, and circuits, causing 
many limitations for long-term use. Soft bio-implantable sensor technology has emerged as a promising solution, offering unique capabilities to 
revolutionize cardiac disease detection and management. To detect and early treatment of the cardiac disease, electric sensor and pace-maker 
could be integrated in cardiac devices. All these components, constructed from biocompatible materials and designed to conform to biological 
tissues, offer a paradigm shift in cardiovascular healthcare. Data collected by these sensors can be wirelessly transmitted to external devices or 
cloud-based platforms, enabling remote monitoring by healthcare professionals. Their soft, biocompatible nature reduces the risk of adverse 
tissue reactions, making them suitable for long-term implantation. In this review we address the importance of biocompatible soft cardiac sensor 
technology. Moreover, we focused on what kinds of sensors could be integrated in future soft cardiac disease detection system. 
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INTRODUCTION 

 
Implantable cardiac sensor technology in the ever-evolving 
landscape of healthcare, the integration of cutting-edge 
technology with medical science has led to remarkable 
innovations. Cardiovascular diseases stand as a leading global 
health challenge, with early detection being a key determinant 
of effective treatment and improved patient outcomes. 
Traditional diagnostic methods often lack the continuous, real-
time monitoring required to detect subtle changes in cardiac 
health. Recently, soft bio-implantable sensors have emerged as 
a revolutionary paradigm in the early detection and monitoring 
of cardiac diseases (1, 2). These extraordinary systems, 
integrated seamlessly to internal organ or human body, show a 
groundbreaking advancement in the realm of cardiology. Soft 
bio-implantable sensors, with their ability to intimately interact 
with the heart's dynamic environment, offer a novel solution. 
The ideal bioelectronic device should mimic the mechanical 
properties of cardiac tissue, possess deformability, and offer 
various sensing functionalities (3). It should seamlessly 
interface with the epicardium while accommodating the heart's 
beating motion. Additionally, it should provide spatiotemporal 
mapping capabilities for cardiac conduction characteristics and 
other physical parameters. Recent advancements in materials, 
mechanical design, and bioelectronic technologies have led to 
the development of deformable epicardial bioelectronics. 
Strategies include engineering rigid materials to achieve 
mechanical softness. For example, thin-film flexible 
electronics, based on ultrathin silicon on a polymer film, have 
been employed to map electrophysiological activities spatially. 
Additionally, open-mesh structural designs in epicardial 
patches with rigid materials offer overall mechanical 
stretchability and deformability (4), allowing them to conform 
to the heart's motion. However, these devices face challenges 
in effectively interfacing with cardiomyocytes, and flexible 
silicon electronics for cardiac mapping do not concurrently 
deform with the beating heart.  
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To overcome these limitations, there have many research 
progresses in terms of soft materials and sensor technology. 
We will review the importance of soft materials in mechanical 
aspects followed by address of principle of cardiac devices. 
 
Soft materials and biocompatibility for Bio-implantable 
system 
 
Recently, various kinds of bio-compatible system have been 
developed for accurate diagnosis. Softness and 
biocompatibility are critical considerations in the development 
and deployment of bio-implantable systems. These systems, 
which encompass a wide range of medical devices such as 
artificial joints, cardiac pacemakers, and drug-eluting stents, 
rely on carefully selected materials to ensure they function 
effectively within the human body. Specifically for the heart 
diagnosis system, current pacemaker system still has 
challenges in terms of wearing-comfort, which originates from 
rigidity and possibility of disconnection of wiring from device 
to heart. To detect the direct signal from the heart, 
stretchability and soft devices have been required to diminish 
the modulus mismatch between device and biological tissue 
during dynamic environments. The choice of materials, 
whether they be metals, polymers, ceramics, or even 
biologically derived substances, holds the key to the success of 
these medical approaches. This demands rigorous 
biocompatibility testing, evaluating how these materials 
interact with our physiology. There have many progresses in 
soft conductive materials for soft sensor system. Conductive 
composite materials, consisting of soft elastomer matrix and 
conductive fillers, are the novel materials, which have both 
electrical conductivity and mechanical stretchability. The key 
of conductive composite is percolative structure formed inside 
of the elastomer matrix. As the percolated nanomaterial 
networks form the electrical conduction pathways inside a 
nanocomposite, high conductivity can be produced by effective 
usage of physical and chemical properties. One of the most 
common strategies to minimize the contact resistance in 
nanomaterials percolation network is to manipulate the size of 
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interfaces, cardiac-machine interfaces demand unique designs 
and material choices to fulfill the demands of superior 
stretchability and dependable electrical and mechanical 
performance, particularly when subjected to substantial 
deformations caused by the heart's volumetric expansion and 
contraction. Recent research on cardiac devices has primarily 
concentrated on innovating soft electronic materials and 
devices capable of recording and controlling cardiac activities 
while adapting to the dynamic motions of the heart. Xu and 
colleagues devised three-dimensional (3-D) flexible 
membranes designed to fully encase the heart (7). These 3D 
integumentary membranes were equipped with stretchable 
electronics featuring a serpentine design that mimicked the 
horseshoe shape, the membrane surrounding the heart. As a 
result, they formed seamless connections with the heart at all 
contact points, creating a conformal interface between 
biological tissue and soft device elements. Importantly, these 
3-D membranes maintained their conformal attachment even 
when subjected to the heart's dynamic cycles 
(contraction/relaxation) and exposure to fluids. Using standard 
photolithography techniques widely used in semiconductor 
process, they fabricated and integrated various electrical and 
optoelectrical components onto the membrane, including light-
emitting diodes, strain gauges, electrophysiological recording 
electrodes, stimulators, pH sensors, temperature sensors, and 
heaters. This multifunctional integration enabled high-density 
multiparametric epicardial mapping and stimulation. 
 
To maintain the electrical and mechanical functions of soft 
cardiac implants during the dynamic micro-motions of cardiac 
tissues, it is crucial to employ stretchable designs and 
conductive materials. These innovations aim to prevent 
congestive heart failure. One effective approach involved the 
development of an epicardial mesh using conductive rubber 
and a stretchable filamentary design. This mesh was designed 
with cross-linked conductive silver nanowires (AgNWs) 
combined with mechanically elastic styrene-butadiene-styrene 
rubber (8). The use of stretchable design and elastic materials 
allowed the cardiac mesh to closely match the elasticity of 
cardiac tissue. This soft device could seamlessly and 
mechanically integrate with the heart, wrapping around the 
entire ventricle to globally pace the cardiac chambers. This 
stable integration allowed for the detection and activation of 
electrophysiological signals from the rat heart for a duration of 
8 weeks without compromising diastolic function. To enhance 
the stability and biocompatibility of the epicardial mesh, 
coating of inert metal is widely used strategy for inflammation 
from our organs. The addition of these Au shells improved 
biocompatibility by protecting the AgNWs from oxidation and 
Ag ion leakage, while also enhancing electrical conductivity 
for improved performance. Additionally, the authors optimized 
the hexylamine during the nanocomposite formation process, 
inducing phase separation and forming a cushioned 
microstructure for high stretchability. This stretchability was 
further enhanced through heat rolling-press treatment. When 
conformally integrated onto a live swine heart, the epicardial 
mesh demonstrated continuous electrophysiological recording, 
successfully detecting high-voltage changes in local 
intracardiac electrograms during ischemia. 
 
Conclusion 
 
Conventional medical devices, especially an electrocardiogram 
(ECG) have been used to check the current status of patient 
and prevent additional shock. However, the system has 

challenging to detect cardiac disease earlier due to relative low 
accuracy. Heart disease should be treated in golden time, 
which is below 5 minutes. In this respect, early detection of 
heart disease and direct treatment is vital in medical system. 
To detect the accurate signal from the heart for diagnosis, 
direct interaction with intimate contact is promising solution 
and it could be realized by soft cardiac devices. By using the 
soft conductive materials, low modulus and deformability of 
materials relax the external stress applied to cardiac devices 
during repetitive expansion and contraction of ventricles. From 
this approach, bio-implantable cardiac devices could have a 
further step to next generation epicardial patch. 
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