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Abstract

The rapid advancement of Micro-Electro-Mechanical Systems (MEMS) technology has led to the development of various types of actuators with
diverse applications. This paper presents a comprehensive study on the state space equations and simulation of MEMS electrostatic actuators
using an equivalent circuit model. The key objectives include introducing MEMS electrostatic actuators, developing a simplified equivalent
circuit model, deriving mathematical modeling of the equivalent circuit, and conducting simulations of LR and LRC circuits as well as the
equation of motion in MATLAB. We followed applied mathematical method using Matlab. The results demonstrate the practicality and accuracy
of the proposed modeling and simulation techniques. The insights gained from this study hold significant potential for enhancing the design and
performance optimization of MEMS electrostatic actuators in various engineering applications.

Keywords: Micro-Electro-Mechanical Systems,State Space Equations, Equivalent Circuit Model, Simulation.

INTRODUCTION

The capacity of Micro-Electro-Mechanical Systems (MEMS)
to combine microscale electrical and mechanical components
onto a single chip has completely changed the engineering and
technological fields. MEMS actuators, which allow for precise
motion and positioning control, are an essential part of these
systems. MEMS electrostatic actuators in particular have
drawn a lot of interest because of their effectiveness,
scalability, and adaptability [1, 2]. The purpose of this research
is to derive state space equations for MEMS electrostatic
actuators and to construct a simplified equivalent circuit model
in order to facilitate a better understanding and practical
implementation of these devices. The main goal of this project
is to develop a more user-friendly and effective modeling and
simulation method for MEMS electrostatic actuators, which
will greatly accelerate the design and optimization processes
[3,4]. The study is organized as follows: we start off by
providing an overview of MEMS electrostatic actuators and
the different technical applications that they are important for.
We then go on to the mathematical modeling of this circuit, the
derivation of state space equations, and the creation of a
simplified equivalent circuit model. The outcomes of LR and
LRC circuit simulations as well as MATLAB equation of
motion simulations are then shown. These findings provide
important new information about the behavior and
functionality of MEMS electrostatic actuators. Lastly, we wrap
off by highlighting the major discoveries and their
consequences for the area [5, 6].

MEMS Electrostatic Actuators
The essential components that enable MEMS to carry out

physical movements are MEMS electrostatic actuators,
sometimes referred to as micro-actuators [7].
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Their compact size, affordability, and low power consumption
are their advantages. The usefulness of electrostatic actuators
is demonstrated by an astounding range of applications. Micro-
mirrors, optical gratings, variable capacitors, and micro-
accelerometers are a few instances of the uses [8]. A micro
mirror device's usage of a parallel-plate electrostatic actuator is
simplified in Figure 1 [9].
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Figure 1. Illustration of an Electrostatic Actuator Used in Micro-
mirror Device [9]

Figure 2 illustrates how a simplified model of the electrostatic
actuator that includes the crucial system dynamics may be
created using this design.
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Figure 2. A Simplified Model of the Electrostatic Actuator [4]
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Two moveable plates and one fixed plate are shown as a
parallel-plate micro-actuator in Figure 2 in an electric field.
The capacitance created between the two plates changes when
the movable plate moves off of its initial location. As a result,
by adjusting the capacitor's gap voltage, one may alter the
movable plate's displacement. However, a pull-in (or snap-
down) event will cause the system to become unstable when
the gap between the two plates gets closer to two thirds of its
initial size. This will drag the movable plate to the fixed plate,
instantly reducing the distance to zero [10].

Developing a Simplified Equivalent Circuit Model
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Figure 3. Electrostatic actuator model [1]

A schematic of a parallel-plate electrostatic actuator is shown
in Figure 3. The motion of the plate is described by equations
(OHto(5)[11,12].

Electrostatics
1 A
F=ce " Vin €Y)
A
Q=c¢ 5 Vin (2)

Equation of motion

1
g =—(F—bg—kig-g0) 3)
Kirchoff’s Laws
V=Ri+V, (4)
d
i = —(CVi) ©)

MEMS Electrostatic Actuator to Equivalent Circuit

By combining (2), (4) and (5) we can write (6) as:
Q=I==|V-= (6)

And by combining (1) and (3) we can write (7) as:

2

m+bg+m9+k(g—go)=0 @)

With the initial condition g = g,, we may solve equation (6)
to obtain the value of charge, Q, and we can solve equation (7)
to obtain the value of gap, g. As coupled differential equations,
these two equations can be represented as RL and RLC
circuits, respectively. Figure 4 displays the entire equivalent
circuit model.
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Figure 4. Equivalent circuit model of electrostatic actuator
Deriving Mathematical Modeling of Equivalent circuit

Kirchhoff's Voltage Law (KVL) provides the following to
derive mathematical modeling for an RL circuit in figure (2):

. V—IR
I= 8
- ®

By contrasting equation (6) with equation (8), it can be
asserted that the present (/) in the RL circuit is essentially
equivalent in numerical terms to the charge (Q) described in
equation (6), provided that the effective inductance and
effective resistance of the RL circuit are specified as:

g
Consequently, the resolution of equation (6) can be achieved
through the application of an RL circuit. Likewise, the
Kirchhoff's Voltage Law (KVL) in an RLC circuit provides:

, 1
LI+RI+EfIdt=V (10)
After differentiating (10) and assuming zero initial conditions,
we obtain:

| .
LI+Ri+=[1=V

c (11D

By comparing equation (7) with equation (11), it can be
affirmed that the current (I) in the RLC circuit is numerically
identical to the gap (g) in equation (7), provided that the
effective resistance, inductance, capacitance, and input voltage
of the RLC circuit are specified as:

2

1 Q
Repp=b,  Legp=m,  Copp=p,  Verr = f (kgo - ﬂ) dt (12)

The initial current passing through the inductor in the RLC
circuit must be numerically equal to g, since the initial gap
equals gg.

Deriving State Space Equations

To obtain the state-space equations for the electrical system in
question that the following equations describe:

I'=(V —-1IR)/L
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LI+RI+[1dt=V

The system can be transformed into a first-order state-space
representation by adding state variables. We'll introduce two
state variables in this instance:

Let:
x, = I (current)
x, = V. (Voltage across the capacitor)

Let's now express these state variables' derivatives in terms of
the original state variables:

I' .x.'l

Ve =%,

The original equations are rewritten using these state variables:
Equation a:

V —1IR
L

. V_le
x1=T

Equation b:

. 1
LI'+RI+EfIdt=V

. 1
Lxl +Rx1 +Efxldt:V

First-order form, the standard state-space representation, is
how we have the system. This can be expressed as a system of
differential equations of first order:

V_le

L

. 1
LX1+RX1+Efx1dt=V

J'Cl=

This system can be written in matrix form as:
State Vector (x):x = [xq,x2]

State Derivative (X):x = [Xq, X;]

Input (Wu =V

Now, the system in matrix form is:

¢ =[((u — xR) /L),x:1/C]

X
u=V

In terms of input and state variables, this expresses the system
as a collection of first-order differential equations. This is an
electrical system's state-space representation.

Simulation Result in MATLAB
a. Simulation of LR Circuit

We use MATLAB to do the simulation of an LR circuit with
the differential equation (8), where R = 7.18 X 1074 N — =,

m
L=414e —7kg, and R ranges from 50 ohms to 2
megaohms:

The Script in MATLAB (1)

% Define parameters
L =4.14e-7; % Inductance in Henrys
V=1.0; % Voltage source in Volts
R_values = logspace(1.7, 6.3, 100); % Logarithmic range from 50 ohms to 2 megaohms
t_max = 0.01; % Maximum time (adjust as needed)
dt=1e-6; % Time step (adjust as needed)
% Initialize arrays to store time and current values
t_values = 0:dt:t_max;
I_values = zeros(length(R_values), length(t_values));
% Perform the simulation for each resistance value
for i = 1:length(R_values)
R =R _values(i);
1=0.0; % Initial current
dIdt = 0.0; % Initial rate of change of current
for j = 1:length(t_values)
d2Idt2 = (V - R * 1)/ L; % Calculate the second derivative
dIdt = dIdt + d2Idt2 * dt; % Update the first derivative
I=1+dIdt * dt; % Update the current
I_values(i, j) =1
end
end
% Plot the results for different resistance values
for i = 1:length(R_values)
semilogx(t_values, I_values(i, :), 'DisplayName', ['R = ' num2str(R_values(i)) ' ohms']);
hold on;
end
xlabel('Time (s)");
ylabel('Current (A)");
title('LR Circuit Simulation');
legend('Location', 'NorthEast');
grid on;

The stated parameters are the time step (dt), maximum time
(tinax),» resistance values range (R,qes), voltage source (V),
and inductance (L). The time and current values are initialized
in arrays. A nested loop iterates over time steps to calculate the
current at each time step using Euler's approach, while a loop
iterates over various resistance values. On a logarithmic scale,
the results are presented for various resistance values.To
satisfy particular simulation needs, we modify the time step
and parameters. An LR circuit's current variation over time for
various resistance levels can be seen by running this script in
MATLAB.

" 10258 LR Circuit Simulation
—— R =50.1187 ohms
—— R =55.7782 ohms
R =62.0768 ohms
— R = 69.0866 ohms
— R =76.888 ohms
R = 85.5703 ohms
51 —— R =95.2331 ohms
— R = 105887 ohms
—— R=117.8552 ohms
R =131.2749 chms
—— R =146.0987 chms
—— R =162.5965 chms
R =180.8572 chms
0 ———R=201.3912 chms
———R =224.1326 ohms
——R =249.4421 ghms
R =277.6095 chms
——R =308.9577 ochms
— R =343.8457 ohms
R = 3826734 chms | |
———R=4258856 ohms | o
——R=473.9773 chms
—— R =527.4997 chms

Current (A)

5
108 108 1074
Time (s)

Figure 5. LR Circuit Simulation rustle
b. Simulation of LRC Circuit

We utilize MATLAB to simulate an LRC circuit with the
differential equation (10), where R = 7.18 x 10™* N — %
C = 10e—6, L=414e —7kg, and R fluctuates from 50

ohms to 2 megaohms. This is demonstrated by the following
script:
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The Script in MATLAB (2)

The Script in MATLAB (3)

% Define parameters

L =4.14e-7; % Inductance in Henrys

C = 1.0e-6; % Capacitance in Farads

V =1.0; % Voltage source in Volts

R_values = logspace(1.7, 6.3, 100); % Logarithmic range from 50 ohms to 2 megaohms
t_max = 0.01; % Maximum time (adjust as needed)

dt = le-6; % Time step (adjust as needed)

% Initialize arrays to store time and current values
t_values = 0:dt:t_max;
1_values = zeros(length(R_values), length(t_values));
% Perform the simulation for each resistance value
for i = 1:length(R_values)
R =R_values(i);
1=0.0; % Initial current
integral_I = 0.0; % Initial integral of current
for j = 1:length(t_values)
d_integral Idt=1;
dldt=(V-R*1I-(1/C) * integral_I)/L;
I=1+dIdt * dt;
integral I = integral I+ d_integral Idt * dt;
I_values(i, j) = 1;
end
end
% Plot the results for different resistance values
for i = 1:length(R_values)
semilogx(t_values, I values(i, :), 'DisplayName', ['R ="' num2str(R_values(i)) ' ohms']);
hold on;
end
xlabel('Time (s)");
ylabel('Current (A)");
title('LRC Circuit Simulation');
legend('Location', 'NorthEast');
grid on;

The defined parameters are the maximum time t,,,4,, the time
step (dt), the resistance values range R,q,e5, the capacitance
C, the voltage source V, and the inductance L. The time and
current values are initialized in arrays. To calculate the current
and the integral of the current at each time step, a loop iterates
over various resistance values and a nested loop iterates over
time steps. The results are presented for various resistance
values on a logarithmic scale in figure (6).To satisfy particular
simulation needs, we modify the time step and parameters. An
illustration of how the current varies over time for various
resistance levels in the LRC circuit may be obtained by
running this script in MATLAB.

10302 LRC Circuit Simulation

—— R=50.1187 ahms
—— R=55.7782 ohms
15 R=620768 chms | |
— R =69.0866 ohms
———R=76.888 ochms
1 R = 855703 ohms
—— R=95.2331 ohms
—— R =105.987 ohms
—— R=117.9552 chms
R =131.2749 chms
— R=146.0087 ohms
——— R =162.5965 chms
R =180.9572 chms
—— R=201.3912 chms

o
o

Current {A)

b=]
— =

05 ———R=224.1326 chms | |
— R=249.4421 chms
R =277.6095 chms
- — R=308.9577 chms | |
——— R=343.8457 chms
15 | | R=282.6734 ohms | |
T io® 10 of [T R=425.88560mms | o

—— R=473.9773 chms
—— R=527.4997 ohms

Time (s)
Figure 6. LRC Circuit Simulation rustle
¢. Simulation the equation of motion:
We write a script to carry out the simulation of the equation of

motion (3) using MATLAB, where b =7.18 X 107* N —
s/m, k=513 X 10* N/m, m= 4.14e—7kg.

% Define parameters
b =7.18e-4; % Damping coefficient in N-s/m
k=5.13e4; % Spring constant in N/m
m = 4.14e-7; % Mass in kg
g0=10.0; % Equilibrium position in m
F=0.0; % External force in N
% Time parameters
t_max = 10.0; % Maximum time (adjust as needed)
dt=1e-5; % Time step (adjust as needed)
% Initialize arrays to store time and position values
t_values = 0:dt:t_max;
g_values = zeros(size(t_values));
g_dot_values = zeros(size(t_values));
% Initial conditions
g=0.1; % Initial position in m
g_dot = 0.0; % Initial velocity in m/s
% Perform the simulation
for i = 1:length(t_values)
g_values(i) = g;
g dot_values(i) = g_dot;
g_double_dot=(F-b * g dot-k *(g-g0))/m; % Calculate acceleration
g_dot=g dot + g_double_dot * dt; % Update velocity
g=g+g dot*dt; % Update position
end
% Plot the results
figure;
subplot(2, 1, 1);
plot(t_values, g_values);
xlabel('Time (s)");
ylabel('Position (m)');
title('Position vs. Time');
subplot(2, 1, 2);
plot(t_values, g_dot values);
xlabel('Time (s)");
ylabel('Velocity (m/s)");
title('Velocity vs. Time");

The stated parameters include the mass m, equilibrium
position g,, damping coefficient b, spring constant k, and
external force F. Time-related parameters, such as the time
step dt and maximum time t,,,,, are set. Time and location
values are initialized in arrays. The simulation is run via a loop
that uses the equation of motion to determine acceleration § at
each time step and updates the location and velocity. The
results are plotted to show the position and velocity over
time.To meet our unique simulation needs, we modify the
parameters, initial conditions, and time step as necessary. A
visualization of the position and velocity changes over time
based on the provided equation of motion may be obtained by
running this script in MATLAB.
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Figure 7. Result of Equation of Motion Simulation
RESULTS

We saw the circuit's behavior in the LR circuit simulation as
the resistance (R) changed from 50 ohms to 2 megaohms.
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Resistance had an impact on the circuit's current (I) response;
at lower resistance values, Ohm's law dictated that the current
increased quickly; at higher resistance values, the inductance's
time constant caused the current to increase more slowly. An
extra integral term added to the equation of motion in the LRC
circuit simulation made it more complicated. The circuit's
behavior over time was impacted by the integral term, which
added a memory effect. The resistance, inductance, and
capacitance all had an impact on the current response's damped
oscillatory  behavior. The damping and oscillation
characteristics varied for different resistance levels. We
examined the motion of an object with mass (m = 4.14e-7 kg)
due to damping, a spring constant, and external forces in the
equation of motion simulation. The simulation demonstrated
how the spring constant, damping, and external force affected
the object's position and velocity over time. The spring
constant affected the oscillation frequency and stiffness, while
damping led to a gradual reduction in oscillation amplitudes
and a settling at a new equilibrium position. These simulations
aid in our comprehension of how, under particular initial
conditions and parameter settings, the behavior of various
physical systems varies over time. They serve as examples of
basic mechanics and circuit theory concepts.

Conclusion

Using an equivalent circuit model, the state space equations
and simulation of MEMS electrostatic actuators have been
investigated in this article. MEMS electrostatic actuators and
their significance in the field of MEMS technology and
engineering were first discussed. Notable advancements in the
discipline include the creation of a simpler equivalent circuit
model and the ensuing derivation of state space equations. The
suggested modeling and simulation approaches have been
validated by the outcomes of LR and LRC circuit simulations
as well as equation of motion simulations performed in
MATLAB. These results provide useful guidance for the
design and optimization of MEMS electrostatic actuators,
improving their functionality over a broad spectrum of
applications. By investigating more intricate MEMS actuator
designs and adding more parameters to the analogous circuit
model, future research can expand on these findings. By
expanding the possibilities for creating sophisticated MEMS
devices, this work enhances the potential of microscale
electromechanical systems.

3k 3k 3k %k %k k%

REFERENCES

10.

11.

12.

Chawda, P. (2017). A simplified equivalent circuit model of
MEMS electrostatic actuator. [International Journal of
Computer Applications, 160(9).

Mita, M., & Toshiyoshi, H. (2009). An equivalent-circuit
model for MEMS electrostatic actuator using open-source
software Qucs. IEICE Electronics Express, 6(5), 256-263.
Marques, A. F., Castello, R. C., & Shkel, A. M. (2005).
Modelling the electrostatic actuation of MEMS: state of the art
2005.

Edwards, J. (2009). Modeling and feedback control of a mems
electrostatic actuator (Doctoral dissertation, Cleveland State
University).

Monsalve, J. M., Melnikov, A., Kaiser, B., Schuffenhauer, D.,
Stolz, M., Ehrig, L. & Schenk, H. (2021). Large-signal
equivalent-circuit model of asymmetric electrostatic
transducers. [EEE/ASME Transactions on Mechatronics,
27(5), 2612-2622.

Vernay, B. (2016). System-level modeling and simulation of
micro electromechanical systems for multi-physics virtual

prototyping in System C-AMS (Doctoral dissertation,
Université Pierre et Marie Curie-Paris VI).
Nemirovsky, Y., & Bochobza-Degani, O. (2001). A

methodology and model for the pull-in parameters of
electrostatic actuators. Journal of micro electromechanical
systems, 10(4), 601-615.

Seeger, J. 1., & Boser, B. E. (2003). Charge control of parallel-
plate, electrostatic actuators and the tip-in instability. Journal
of Micro electromechanical systems, 12(5), 656-671.
Papavasiliou, A., & Olivier, S. (2006). Nanolaminate foils
used to make deformable mirrors. In International Society for
Optical Engineering. http://photonicsclusters.org.

Zhu, G., Lévine, J., & Praly, L. (2005, June). On the
differential flatness and control of electrostatically actuated
MEMS. In Proceedings of the 2005, American Control
Conference, 2005. (pp. 2493-2498). IEEE.

Gurun, G., Tekes, C., Zahorian, J., Xu, T., Satir, S., Karaman,
M., ... & Degertekin, F. L. (2014). Single-chip CMUT-on-
CMOS front-end system for real-time volumetric IVUS and
ICE imaging. IEEE transactions on ultrasonics, Ferroelectrics,
and frequency control, 61(2), 239-250.

Mukhiya, R., Agarwal, P., Badjatya, S., Garg, M., Gaikwad,
P., Sinha, S., ... & Gopal, R. (2019). Design, modelling and
system level simulations of DRIE-based MEMS differential
capacitive accelerometer. Microsystem technologies, 25, 3521-
3532.



