
International Journal of Science Academic Research 
Vol. 05, Issue 03, pp.7123-7129, March, 2024 
Available online at http://www.scienceijsar.com 
	

 
ISSN: 2582‐6425 

Research Article 
	

AN EXTENSION PROOF OF RIEMANN HYPOTHESIS BY A LOGICAL ENTAILS TRUTH TABLE 
 

*Kai Shun, Lam 
 

Fellow of Scholar Academic Scientific Society, India 
Dignitary Fellow, International Organization for Academic & Scientific Development, India 

 
Received	24th January 2024;	Accepted	29th February 2024;	Published	online	18th March 2024 

 
 

Abstract 
 

There were many mathematicians who tried to prove or disprove the statement of Riemann Hypothesis. However, none of them have been 
successfully approved by the Clay Mathematical Institute. In addition, to the best of this author’s knowledge, these mathematicians haven’t 
employed the technique of logical truth table during their proofs. With reference to this author’s previous proof in [1], this author have employed 
the method of multiplicative telescope together with the prime boundary gaps. In this extended version of my proof to the Riemann Hypothesis, 
this author tries to show that RH statement is true through the four cases of the conditional statements in the truth table. Three of the cases (I, II, 
IV) are found to be true for the conditional statement in the Riemann Hypothesis while only one (case III) is found to be false (and acts as the 
disproof by a counter-example). Moreover, there are also three sub-cases (i, ii, iii) [1] among these four tabled cases. The main idea is that the we 
may disproof the hypothesis statement that is similar to the RH one by first find a counter-example which is obviously a disproof (case III) to the 
(Riemann) hypothesis. But it is NOT compatible with the GÖdel’s Incompleteness Theorem. Otherwise either the disproof to the statement or the 
Gödel is incorrect which is impossible. Hence, the disproof is said to be incompatible with the Gödel. On the other hand, all of the other truth 
cases (I, II, IV) for the statement are indeed the examples for the positive results to the Riemann Hypothesis statement and are compatible with 
the Gödel. Therefore, the only way to make a conclusion is to say or force the Riemann Hypothesis statement to be correct. In general, for any 
hypothesis with the conditional statements structure like the Riemann one, we may also prove them by the similar techniqe and the arguments of 
the truth table for their conditional statements together with the Gödel’s Incompleteness theorem to force the positive result for the hypothesis 
statement. Actually, there are many applications for the truth tables especially in the fields like language (structure & modeling) or in 
engineering (logic gates & programming) etc during our everyday usage. 
 

Keywords: Quantum computing, Statement logic with branch, Riemann Hypothesis, Number theory and Taylor approximation model. 
 

	
INTRODUCTION 

 
As shown in my previous papers [1], this author have developed a suggested way to prove the long awaiting question for the 
truthness of the Riemann Hypothesis in a long historic period of time. In fact, with reference to [1], it employs the method of 
multiplative telescope together with some logics. Actually, one may extend [1] to prove the Riemann Hypothesis by the logical 
entails truth table in a novel and complete way. Then we may let the Riemann Hypothesis statement to be the hypothesis X and 
want to determine whether it may be correct or not. In fact, the truth table for the Riemann Hypothesis should like the following: 
 

Hypothesis X Consequent Y Conditional X → Y 

True (T) True (T) True (T) 
False (F) True (T) True (T) 
True (T) False (F) False (F) 
False (F) False (F) True (T) 

 

Figure 1: The Truth table for a logical conditional statement [2] & [3] for my proof in Riemann Hypothesis statement 
 

In reality, a truth table may have some applications in both language or engineering or one may refer to another story. Then, the 
Riemann Hypothesis statement is said to be both true (for the infinite many examples and compatible with GÖdel’s 
Incompleteness Theorem) or the positive proof and false (for the disproof by the counter-example and incompatible with the 
GÖdel’s Incompleteness Theorem). Thus, in such a case, the Riemann Hypothesis is forced to be true, otherwise either the 
disproof by the counter-example or the GÖdel’s Incompleteness Theorem may be false which cannot happen. All of the above 
results (true, false cases and the incompleteness) imply and force the Riemann Hypothesis statement must be true or correct. In 
practice, this author wants to remark that his University of Hong Kong’s undergraduate project was once about the discussion in 
searching the foundation of mathematics by the philosophy (i.e. mathematical logic-ism, intuitionism, formalism and the Gödel’s 
Incompleteness theorem etc where the aforementioned (intuitive) logical truth table (Figure 1) for the Riemann Hypothesis may 
have some relationship with the previous project’s research) from 1995 to 1996 before the Hong Kong handover. Indeed, my UG 
project’s topic was somehow implying a linking with the oil risk in 1970s and the associated commercial economic threats etc. 
 
Literature Review -- A Proof for the infinite many of Riemann Non-Trivial Zeros 
 
Proof for ininite number of Primes 
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We may show that there are infinite many of prime numbers with the algebraic philosophical proofs as outlined in [8] & [9]. Then 
we may apply the prime and non-trivial Zeros fourier duality [10] & [12] to prove that there are actually infinite many Riemann 
non-trivial zeta zeros. In practice, this author suggests one may find the alternative proof for infinite many number of primes by 
point set topology as outlined in [11], [12], [13], [14] & [15]. This author will leave the actual proof to those interested parties. 
However, no matter what kind of proof(s) that you may prefer, the key focus is to find out the contradiction(s) behind the initial 
assumption(s) and the final result(s) that obtained etc. 
 
Proof for Infinite number of non-trivial zeta zeros 
 
The basic idea of the proof for infinite number of non-trivial zeta zeros by the analytic number theory is: we may first assume that 
there were finite number of non-trivial zeta zeros. Then from the Riemann Explicit formula [16]: 
 

ψ(x) = ∑ 𝑙𝑛𝑝ೖஸ௫  = x - ∑
௫ഐ

ఘఘ  - 𝑙𝑛ሺ2𝜋ሻ - 
ଵ

ଶ
𝑙𝑛ሺ1 െ 𝑥ିଶሻ 

 
where ρ is the complex Riemann Zeta zeros, 
 
ௗ

ௗ௫
𝜓ሺ𝑥ሻ = 1 - ∑ 𝑥ሺఘିଵሻఘ  - 

൫௫షయ൯

ሺଵି௫షమሻ
 = 1 - ∑ 𝑥ሺఘିଵሻఘ  - 

ଵ

௫ሺ௫మିଵሻ
 

 
But as there were finite number of non-trivial zeta zeros, thus ∑ 𝑥ሺఘିଵሻఘ  = k where k is a complex valued constant, then ψ’(x) = 1 - 

(a+bi) - 
ଵ

௫ሺ௫మିଵሻ
 where k’ = (1-a) + bi 

 

But the integration [17] of 
ଵ

௫ሺ௫మିଵሻ
 = - ln |x| + ½ ln |x-1| + ½ ln |x+1| + c or 

 
ψ (x) = - ln |x| + ½ ln |x-1| + ½ ln |x+1| + [(1-a)+bi]x + c ------ (computed ψ(x) formula) 
.്.∑ 𝑙𝑛𝑝ೖஸ௫ =∑ .ஸ௫ /\(n) 
 
As the fact that 
 

ψ(x) = ∑ 𝑙𝑛𝑝ೖஸ௫  = x - ∑
௫ഐ

ఘఘ  - 𝑙𝑛ሺ2𝜋ሻ - 
ଵ

ଶ
𝑙𝑛ሺ1 െ 𝑥ିଶሻ -------- (original ψ(x) formula). 

 

Actually, ∑
௫ഐ

ఘఘ  is a polynomial with the highest degree of sup{ρ | ρ is a zeta zeros in the control strip}. But we are now only to 

employ a linear function of order one (i.e. [(1-a)+bi]x to approximate x - ∑
௫ഐ

ఘఘ   or x - ∑
ഐሺೣሻ

ఘఘ . As 𝑒ఘሺ௫ሻ is an index-complex 

valued exponential function which may seem to make no sense if there were finite number of non-trivial zeros that may imply a 
linear approximation [(1-a)+bi]x to 𝑒ఘሺ௫ሻ. Actually, the Taylor Expansion for 𝑒ఘሺ௫ሻ at point “a” for the first 3 terms [40], 
according to the U.S.A. Mathematic-a (Home Version, 2023) is: 
 

𝑒ሺሻ
ഐ
 𝑒ሺሻ

ഐ
𝜌𝑙𝑛ሺ𝑎ሻିଵାఘ𝑙𝑛′ሺ𝑎ሻሺ𝑥 െ 𝑎ሻ  ൬

1
2
𝑒ሺሻ

ഐ
𝜌𝑙𝑛ሺ𝑎ሻିଶାఘ൰ 

 
൫െ𝑙𝑛′ሺ𝑎ሻଶ  𝜌𝑙𝑛′ሺ𝑎ሻଶ  𝜌𝑙𝑛ሺ𝑎ሻఘ𝑙𝑛′ሺ𝑎ሻଶ  𝑙𝑛ሺ𝑎ሻ𝑙𝑛′′ሺ𝑎ሻ൯ሺ𝑥 െ 𝑎ሻଶ. . .𝑜ሺ𝑥 െ 𝑎ሻସ 
 
which is a polynomial of order at least 3 for the summation to all of the complex valued zeta zeros. 
 

So ∑
௫ഐ

ఘఘ  = ∑
ഐሺೣሻ

ఘఘ  where ρ = u + viand belongs to those complex valued zeta zeros 

={ ∑ .ഇ∈ఘ  [𝑒ሺሻ
ഐ
 𝑒ሺሻ

ഐ
𝜌𝑙𝑛ሺ𝑎ሻିଵାఘ𝑙𝑛′ሺ𝑎ሻሺ𝑥 െ 𝑎ሻ  ቀ

ଵ

ଶ
𝑒ሺሻ

ഐ
𝜌𝑙𝑛ሺ𝑎ሻିଶାఘቁ 

൫െ𝑙𝑛′ሺ𝑎ሻଶ  𝜌𝑙𝑛′ሺ𝑎ሻଶ  𝜌𝑙𝑛ሺ𝑎ሻఘ𝑙𝑛′ሺ𝑎ሻଶ  𝑙𝑛ሺ𝑎ሻ𝑙𝑛′′ሺ𝑎ሻ൯ሺ𝑥 െ 𝑎ሻଶ. . .𝑜ሺ𝑥 െ 𝑎ሻସ 
]/ρ} 
 

In reality, the computed ψ(x) is also different from the original ψ(x) by a constant term ln(2π) = 
క′ሺሻ

కሺሻ
 where x  = 0 or 2nπ for n = 

1,2… but c in the computed ψ(x) formula may be equal to 
క′ሺ௫ሻ

కሺ௫ሻ
 where 0 ൏ 𝑥.൏ 2𝑛𝜋. Thus, a contradiction is occured mainly due 

to the initial assumption that there were just a finite number of non-trivial Riemann Zeta zeros. Hence, we may conclude that there 
are infinite number of Riemann non-trivial zeta zeros. 
 
Alternatively, we have: x(x2-1)ψ’(x) = x(x2-1) – (x2-1)k - 1 
After simplification, (x2-1)[x(ψ’(x)-1)+k] = -1 
[x(ψ’(x)-1)+k] = -1 or [x(ψ’(x)-1)+k] = 1 
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x = 0 or x = 21/2 or x = - (21/2) and ψ’(x) = 
ିିଵ

௫
 + 1 or ψ’(x) = 

ିାଵ

௫
 +1 

ψ(x) = -(k+1) ln (x) + x + c or ψ(x) = -(k-1) ln (x) + x + c 
.്.∑ 𝑙𝑛𝑝ೖஸ௫ =∑ .ஸ௫ /\(n) 

= x - ∑
௫ഐ

ఘఘ  - 𝑙𝑛ሺ2𝜋ሻ - 
ଵ

ଶ
𝑙𝑛ሺ1 െ 𝑥ିଶሻ 

 
which is a contradiction due to the initial assumption that there were finite number of non-trivial zeta zeros. Hence, we conclude 
that there are infinite number of non-trivial zeta zeros. 
 
A Conversion between the primes and zeta zeros 
 
In fact, we may still need to compute the recurrence formula for those primes by the Golomb’s formula. Once if my proposed 
proof of Riemann Hypothesis is verified or found to be true, then we may compute the corresponding nth term of the Riemann 
Zeta zeros as shown in [18] & [19]. Theoretically, it is possible that we may compute the (mirror image inverse) n+1th term of the 
prime from the nth term of the Riemann Zeta zeros from a corresponding recurrence formula. However, the focus of my series of 
proof is to determine whether the Riemann Hypothesis is true or false. Thus, this author believes that these pair of the recurrence 
formulas for both primes and non-trivial zeta zeros are in fact out of the scope of the present research paper. 
 
The Extended Proof to Riemann Hypothesis 
 
In order to have the extended proof version to the Riemann Hypothesis, let us first have a transformation of the formal Riemann 
Hypothesis statement into the conditional one. That says [41], 
 
“All (nontrivial) zeros of all Dedekind zeta functions lie on the so called “critical line”.” Or in terms of the conditional statement: 
“If the aforementioned statement is true, then all of the Riemann zeros lie on the critical line and the RH must be true.” 
In other words, “if it is a non-trivial Riemann Zeta Zeros, then they must not lie outside the critical line (or they must lie on the 
critical line).” However, the mirror converse of the above statement may NOT always be true since it is well known that “NOT all 
(or every) points that lie on the critical line must be a non-trivial Riemann Zeta zeros.” 
 
Then according to p.7 of [2], it only needs to analyise the conditional statement that (the ‘if – then’ combination in ordinary speech 
as mentioned below:) 
 
“ If Chan was here, then the knife is not his.” 
Or (Chan was here) → (The knife is not his) 
 
Thus, my reformulated Riemann Hypothesis conditional statement has a similar conditional structure to the above ‘if – then’ 
conditional statement. 
Or (non-trivial Riemnann Zeta zeros) → (these zeros must not lie outside the critical line) 
 
Therefore, we may establish a similar (or even the same) truth table as shown in the figure 1 of the introduction section as we have 
in fact verified those situations (in form of truth table) for the analyising my conditional statement in Riemann Hypothesis. To be 
precise, we may have the same truth table for my conditional statement of RH just as in figure 1. The only left is just to prove 
different cases in the truth table for another kind of vertification from my previous paper series in the Riemann Hypothesis. The 
following four cases and the associated three sub-cases in [1] are indeed the details: 
 
Case I: the (assumption)truth for the Riemann Hypothesis statement gives a positive true result and hence implying RH is correct 
(i.e. true & true imply true – row one of Figure 1). In other words, we want to show for all non-trivial Riemann Zeta zeros, they 
must not lie outside the critical the critical line. The proof for the Riemann Hypothesis is said to be true has been shown as in my 
previous paper [4] by employing Matlab programming code for the verification all over the complex infinity plane except the line 
x = 1 which is a singularity and hence has an infinite many solutions or infinite many cases; 
 
Case II : the (assumption)false for the Riemann Hypothesis statement gives a positive true result and hence implying RH is 
correct (i.e. false & true imply true – row two of Figure 1). In other words, we want to show that for all normal complex values 
(i.e. not non-trivial zeta zeros), they lie outside the critical line. The mirror image inverse proof for the above Riemann Hypothesis 
is said to be true that has been shown in my previous paper [1]’s case III or the sub-case iii. In fact, the wrong assumptions in the 
Riemann equations will give positive outcome that non-trivial complex valued model equation part equal to 4*cot(ln(x))/(x+1)2 
which is consistent with the result obtained in [1] while real parts equal to 0.5 (which is also shown in [1]) is just the zeros lie on 
the critical line. In reality, the above non-trivial zeta root model equation is true all over the critical strip up to infinity as in the 

process of computation [4], the assumption for the Riemann Zeta function (I.e. ∑
ଵ

ೞ
∞
ୀଵ ) is a summation from one to infinity, so as 

the calculated zeta root model equation should be validated all over the infinite real-complex plane (i.e.  ∑
ଵ

ሺೠశೡሻ ሺೖሻ െ
∞
ୀଵ

ሺ௨ା௩ሻሺ௫ିሻ

ሺೠశೡሻ ሺೖሻ 
൬ି

ೠమశమೠೡశೡమషೠషೡ
మೖమ

ା
ሺೠశೡሻమ

ೖమ
൰ሺ௫ିሻమ

ሺೠశೡሻ ሺೖሻ ). In addition, we solve for the prescribed zeta root model equation to get the final 

zeta model equation answer 0.5 +/- {4*cot [ln(x)] / (x+1)2}i for all x over the infinite real-complex plane together with infinite 
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many solutions. But from [6], this author have found that not all of the complex-valued points that lie on the critical line or {0.5 
+/- vi / 0.5 +/- {4*cot [ln(x)] / (x+1)2i, v belongs to real} is the non-trivial zeta zeros. Indeed, the non-trivial zeta roots’ model 
equation is only 0.5 +/- {4*cot [ln(x)] / (x+1)2}i with (infinite many) of them lie on the critical line x = 0.5. The above result 
implies that there are still some complex-valued numbers but NOT zeta zeros that lie on the critical line x = 0.5. Or in the normal 
statement (relative to the aforementioned mirror image inverse), there are some complex-valued numbers but NOT non-trivial zeta 
zeros, they lie outside the critical line x = 0.5. Hence, the prescribed RH statement in my present case II is proved. Actually, all of 
the normal complex values are independent of any critical lines no matter x = 0.5 or x = 1 and they are distributed all over the 
complex plane. 
 
Case III: the (assumption) true for the Riemann Hypothesis statement gives a (negative) false result and hence implying RH is 
incorrect (i.e. true & false imply false – row three of Figure 1). In other words, we want to assume that there exists some non-
trivial Riemann Zeta zeros with the properties that these zeros may lie outside the critical line. The disproof to the above statement 
will be shown as: 
 

First assume that 0.5 +/- [4*cot(ln(x)) / (x+1)2]i is just the model equation for the Riemann Zeta function (i.e. ∑
ଵ

ೞ
∞
ୀଵ  ). Then 

according to the Dirichlet-Eta function [5]: η(s) = ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  where s = u+vi for all values on the complex plane, by applying the 

Taylor approximation to η(s) with Maple soft and solve it, we may get: 
 

ℎ≔
𝑒ሺିଵሻగூ

𝑒ሺ௨ା௩ሻ ሺሻ 
൬𝑒ሺିଵሻగூ𝜋𝐼 െ

𝑒ሺିଵሻగூሺ𝑢  𝑣𝑖ሻ
𝑎 ൰ ሺ𝑥 െ 𝑎ሻ

𝑒ሺ௨ା௩ሻ ሺሻ


൬െ

𝑒ሺିଵሻగூ𝜋ଶ
2 െ

𝑒ሺିଵሻగூሺ𝑢ଶ  2𝑢𝑣𝑖  𝑣𝑖ଶ െ 𝑢 െ 𝑣𝑖ሻ
2𝑎ଶ െ

𝑒ሺିଵሻగூሺ𝜋𝑎𝐼 െ 𝑢 െ 𝑣𝑖ሻሺ𝑢  𝑣𝑖ሻ
𝑎ଶ ൰ ሺ𝑥 െ 𝑎ሻଶ

𝑒ሺ௨ା௩ሻ ሺሻ  

 
where its roots are: 
 

൞𝑎 ൌ 𝑎,𝑢 ൌ
𝐼𝜋𝑎ଶ െ 𝐼𝜋𝑎𝑥 െ 𝑎𝑣𝑖  𝑣𝑖𝑥 െ

3𝑎
2 

𝑥
2 

√െ4𝐼𝜋𝑎ଷ  8𝐼𝜋𝑎ଶ𝑥 െ 4𝐼𝜋𝑎𝑥ଶ  𝑎ଶ െ 6𝑥𝑎  𝑥ଶ
2

െ𝑥  𝑎
,𝑣𝑖 ൌ 𝑣𝑖, 𝑥 ൌ 𝑥ൢ ,൞𝑎 ൌ 𝑎,𝑢

ൌ
𝐼𝜋𝑎ଶ െ 𝐼𝜋𝑎𝑥 െ 𝑎𝑣𝑖  𝑣𝑖𝑥 െ

3𝑎
2 

𝑥
2 െ

√െ4𝐼𝜋𝑎ଷ  8𝐼𝜋𝑎ଶ𝑥 െ 4𝐼𝜋𝑎𝑥ଶ  𝑎ଶ െ 6𝑥𝑎  𝑥ଶ
2

െ𝑥  𝑎
,𝑣𝑖 ൌ 𝑣𝑖, 𝑥 ൌ 𝑥ൡ 

 

which is obviously different from the previous roots found in [1] for ∑
ଵ

ೞ
∞
ୀଵ . Or 

 

𝑓 ≔
1

𝑒ሺ௨ା௩ሻ ሺሻ െ
ሺ𝑢  𝑣𝑖ሻሺ𝑥 െ 𝑘ሻ

𝑘𝑒ሺ௨ା௩ሻ ሺሻ 
൬െ

𝑢ଶ  2𝑢𝑣𝑖  𝑣𝑖ଶ െ 𝑢 െ 𝑣𝑖
2𝑘ଶ 

ሺ𝑢  𝑣𝑖ሻଶ

𝑘ଶ ൰ ሺ𝑥 െ 𝑘ሻଶ

𝑒ሺ௨ା௩ሻ ሺሻ  

 
where its roots are: 
 

൞𝑘 ൌ 𝑘,𝑢 ൌ
െ𝑣𝑖𝑘  𝑣𝑖𝑥 െ

3𝑘
2 

𝑥
2 

√𝑘ଶ െ 6𝑥𝑘  𝑥ଶ
2

െ𝑥  𝑘
, 𝑣𝑖 ൌ 𝑣𝑖, 𝑥 ൌ 𝑥ൢ, 

൞𝑘 ൌ 𝑘,𝑢 ൌ
െ𝑣𝑖𝑘  𝑣𝑖𝑥 െ

3𝑘
2 

𝑥
2 െ

√𝑘ଶ െ 6𝑥𝑘  𝑥ଶ
2

െ𝑥  𝑘
, 𝑣𝑖 ൌ 𝑣𝑖, 𝑥 ൌ 𝑥ൢ 

 

In fact, both of the roots for ∑
ଵ

ೞ
∞
ୀଵ  and ∑

ିଵሺషభሻ

ೞ
∞
ୀଵ  are different. Actually, there is a nπ phase difference/shift between their 

roots as: 
 

Roots model equation for ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  is 0.5  േ.{4*[cos(േ.nπ)]cot [േ.ln(x)] / (x+1)2}i but roots model equation for ∑

ଵ

ೞ
∞
ୀଵ  is 0.5 

േ.{4*cot [േ.ln(x)] / (x+1)2}i; 
 
If we apply the Taylor approximation for cot(x) = (1/x) – (x/3) & ln(x) = 2(x-1)/(x+1) & takes the limit x tends to infinity, then we 
may have: 
 

{4*[cos (േ.nπ)]*cot [േ.ln(x)] / (x+1)2}i tends to 4*{
ିଵ

ଶ
[
ଶିమగమ

ଶ
]}/(x+1)2i and {4*cot [േ.ln(x)] / (x+1)2}i tends to (2/3)[1/(x+1)]2 i 

Obviously, ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  = 0 (although there is a phase shift) for s = 0.5+/-[4*cot(േ.ln(x)) / (x+1)2]i . 
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But by considering the mirror image, converse of the above: ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  = 0 for s = 0.5 +/- {4*[cos (േ.nπ)]*cot [ േ. ln(x)] / 

(x+1)2}i with the fact that ∑
ଵ

ೞ
∞
ୀଵ = 0 where the real part of the above s also has the value 0.5. 

 

This author have shown in [1] that s = 0.5+/-[4*cot(േ.ln(x)) / (x+1)2]i is the computed roots model equation for ∑
ଵ

ೞ
∞
ୀଵ with the 

real part only equal to 0.5. But the roots of ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  and ∑

ଵ

ೞ
∞
ୀଵ  both have real parts equal to 0.5 which do NOT lie outside the 

critical line and is contradicting to the assumption that there are some non-trivial zeta zeros lying outside the critical line. The 
result may thus imply that the statement assumption that there are some non-trivial zeta zeros lie outside the critical line is 
incorrect. This is just the disproof to my RH statement in the present Case III by the counter-example (only one is enough but we 
may still have infinite many counter-examples as the Riemann Zeta root model equation always expands all over the real-complex 
plane with infinite many solutions; 
 
(N.B.1. In the sense of quantum mechanics [31], there may be a scttering by a Square Well. As shown in the exercise 1 of p.312 in 

[31], the factor 𝑒ଶఋ= 
௧േ

ഏ
మ
ା

௧േ
ഏ
మ
ି

 in the similar scattered wave [31], the time delay should be: [time delay] = 2ℏ
ௗఋ

ௗா
 = 

ଶ

ℏ

ௗఋ

ௗ
. 

 
But cot (nπ/2) tends to zero, thus in particular, we may get 𝑒గ + 1 = 0 or a beautiful Euler God’s identity equation [33] & [34]. 
 
Indeed, the infinite square potential well may be acted as a model to describe the behaviour of an electron that is confined to move 
within a one dimensional box of finite width or a square arrary of lens to trick the particle (as a quantum bit for each individual len 
of the array of lens) [32] for a quantum system to compute. Moreover, there will be a Quantum Fourier Transform 𝑓ሺ𝑥ሻ ൌ
ଵ

√ଶగ
 𝑔ሺ𝑥ሻ𝑒ି௫
∞

ି∞ 𝑑𝑥, p.27 [31]. Indeed the transform may be in turn acted as the quantum bits or even the quantum circuits 

whenever the conditions are available. Hence, we may establish our commercial used quantum computer just like our present 
desktop one. But the present focus of this paper is a supplementary to the proof of Riemann Hypothesis and the details of the 
quantum computing will be left for those interested parties). 
 

(N.B. 2. For the Dirichlet-Eta function [42], there may be cases that η(s) = ∑
ିଵሺషభሻ

ೞ
∞
ୀଵ  =0 for s with real part equal to 1 where the 

non-trivial roots lie outside the critical line x = 0.5. But the fact is that we have the relationship: η(s) = ξ(s) (1 – 21-s). Hence, for all 
of the Riemann zeta roots with real part equal to 0.5 is also the roots of η(s). So we conclude there are both types of non-trivial 
zeros lie on the critical line and lie outside the critical line for the Dirichlet-Eta function while a singularity occurs in the line x = 1 
for the Riemann Zeta function ξ(s). In reality, ξ(s) may be independent of the Dirichlet-Eta function’s another critical line on x =1 
while both of the functions are a type of polylogarithm function [43] & [46] which is an equivalent to Hurwitz function [44] or just 
a special case of Lerch transcendent [45]. The polylogarithm function may be reduced to the natural log function for some special 
values of s = 1. That may be why my proof for the Riemann Hypothesis by logarithm inequalities should be correct or acting as a 
key to open the RH problem door and may be reality solve it in [1]. In reality, logarithm is just the inverse of polylogarithm and 
that is why my trial for the proof in RH is indeed a success. Actually, we may define the polylogarithm as a power series [45] & 
[46] like: 
 

Lis(z) = ∑
௭

ೞ
∞
ୀଵ  

 
Moreover, the logarithm function has a high connection with entropy and the (quantum) information (theory). In fact, 
polylogarithm may be applied in the perturbative quantum field theorem [47] which may be highly related to the correlations 
between the natural forces with quantum mechanics [48]. Actually, the relationship between quantum field theory and the 
quantum mechanics is something like the “I am in you and you in me” by the British poet, William Blake.) 
 
Case IV: the (assumption) false for the Riemann Hypothesis statement gives a (negative) false result and hence implying RH is 
true (i.e. false & false imply true – row four of Figure 1).  In other words, we want to show that for all of the normal complex 
values, they must lie outside the critical line.  The proof has been shown in my previous paper [1]’s case I & II or the sub-case i & 
ii. Or the wrong Riemann equation assumption may give the contradictory results for ξ(s) where s = 1 or {s = u + vi where u, v are 
real numbers / 0.5+/-4*cot(+/-ln(x))i/(x+1)2} in the prime gap difference. In fact, the wrong assumption is just the number theory 
equations of (*’) in [1] but NOT for the line x = 1 with infinite many solutions in the case of ξ(1) over the line x = 1. Indeed, the 
the prime gap (difference) answers in [1] are always with infinite many solutions NO matter what the initial assumption may be 
for all j lies between 1 and infinity over the line x = 1. Moreover, for the case {u + vi / 0.5+/-[4*cot(ln(x)) / (x+1)2]i | u & v are 
real numbers}, it includes the set of all the infinite real-complex plane. Hence, the sub-case ii will have infinite many solutions as 
shown in the final prime gap (difference) answer in [1] NO matter what the initial assumption may be for all j lies between 1 and 
infinity within the infinite real-complex plane. 
 
Conclusion 
 
In a nutshell, this author have already proved the statement of Rienamm Hypothesis is true mainly by the multiplicative telescopic 
method together with the differences in prime gaps [1] and the logical truth table (Figure 1). As shown in the previous proof 
section, there are infinite many cases or examples (I, II, IV) for the Riemann Hypothesis is said to be true but we still cannot 
conclude that RH is true because of the GÖdel’s Incompleteness Theorem. Thus, we may just say that these truth examples (case I, 
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II, IV) of RH are only compatible true examples [27] with the GÖdel’s Incompleteness Theorem. However, there is only one case 
(III) for the Riemann Hypothesis to be false or RH is disproved by the counter-example [26] in case III. Then in such a case, RH is 
said to be false or it is the disproof of the Riemann Hypthesis (by a counter-example) which is NOT compatible with the Gödel’s 
undecidability. Otherwise, either my disproof to RH in case III or the GÖdel’s Incompleteness Theorem will be false which are 
both impossible [28]. Therefore, only the infinite many true examples of Riemann Hypothesis must be correct and compatible with 
the Gödel’s undecidability. Or in such a case, the Riemann Hypothesis is thus forced to be correct [29 a & b]. Therefore, we come 
to a conclusion that this author have proved that the Riemann Hypothesis statement is correct or true. A last word for this author’s 
final remark is that the Riemann Hypothesis statement may be independent of the present ZFC system as one may need to 
reconstruct a new real number line where x = 0.5 becomes x = 0 in order to contain all non-trivial zeta zeros. Once if we may 
restore the traditional real number line without a transformation of x = 0.5 to x = 0, then the Riemann Hypothesis statement may 
depend on the old ZFC system. Hence, we may need to employ a (hybrid) fuzzy between the independence and dependence or a 
“(Hybrid) Fuzzy ZFC system” [30] for solving the Riemann Hypothesis.  In practice, no matter the dependence or the 
independence, the key interests will be to further investigate both the structure and the random-ness of those non-trivial zeta zeros 
together with an application in the (quantum) cryptography etc. 
 
Limitations -- An Error Estimate for the Computed Root’s Model Equation 
 

In practice, the computed Riemann Zeta function (i.e.∑
1

��
∞
�ୀ1 )’s root model equation is 0.5+/-[4*cot(ln(x)) / (x+1)2]i. It tends to 

(2/3)[1/(x+1)]2 when x tends to infinity for cot(ln(x)) where cot(x) = (1/x) – (x/3) & ln(x) = 2(x-1)/(x+1). 
 

Actual Zeta Root Estimated Zeta Root Absolute Percentage Error 

14.1347 14 -- (for (2/3)[1/(x+1)]2 = [14.1347]) 0.95297% 
21.0220 21 -- (for (2/3)[1/(x+1)]2 = [21.0220]) 1.04% 
25.0109 25 -- (for (2/3)[1/(x+1)]2 = [25.0109]) 0.0436% 
30.4249 30 (for (2/3)[1/(x+1)]2 = [30.429]) 1.40984% 
32.9351 33 (for (2/3)[1/(x+1)]2 = [32.9351]) 0.1971% 
37.5862 38 (for (2/3)[1/(x+1)]2 = [37.5862]) 1.1009% 
40.9187 41 (for (2/3)[1/(x+1)]2 = [40.9187]) 0.1987% 
43.3271 43 (for (2/3)[1/(x+1)]2 = [43.3271]) 0.75495% 
48.0052 48 (for (2/3)[1/(x+1)]2 = [48.0052]) 0.01083% 
49.7738 50 (for (2/3)[1/(x+1)]2 = [49.7738]) 0.45446% 

 

Figure 2. Absolute Percentage Error between the first to the tenth estimated (by s = 0.5+/-[4*cot(ln(x)) / (x+1)2]i) &  
the actual Riemann zeta root 

 
It seems that the maximum absolute percentage error is about 1.5% for the first ten Riemann Zeta zeros which lies in an acceptable 
range. This also constitues another positive result for the disproof for Riemann Hypothesis by the counter-example. In fact details 
for the structure of the Riemann Zeta zeros should be investigated by the complex Lie Algebra and Lie Groups [21] together with 
the corresponding Branching rule(s) [20] & [23] discovered by the mathematic-a software LieART 2.0 [22] or even the complex 
Lie Algebra as well as the homology & homotopy etc [24]. In fact, by considering the lattice’s weight unification and 
decomposition so as to understand the complexity of the processing system [25]. Actually, the determination of the structure for 
the Riemann Zeta zeros is another story for researching which is out of the scope of the present topic in the dtermination whether 
the statement of Riemann Hypothesis is true or false. Finally, we may observe that those non-trivial Riemann Zeta Zeros can be 
truncated [37] & [38] and hence is measurable or we may “quantum mechanics” those Zeta Zeros [35] & [36]. 
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