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Abstract 
 

This research work provides an investigation of the (1+1) reaction-diffusion equation, which models population dynamics with spatially varying 
growth rates represented by z(x) using Lie point symmetries analysis. Our methodology involves categorising this equation into three distinct 
types based on the constraints imposed on the spatially dependent growth rate during the solution of the Lie group determining equations. For 
each category, we systematically derive the corresponding conservation laws associated with the identified symmetries. Additionally, we develop 
exact solutions for each type, offering a widespread understanding of the population dynamics modelled by the equation. We pay special 
attention to scale-invariant solutions, which are explored using the global invariants of the one-parameter group. This in-depth investigation not 
only enhances our theoretical understanding of reaction-diffusion processes in heterogeneous environments but also highlights the utility of 
symmetry methods in solving complex differential equations. 
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1. INTRODUCTION 

 
Conservation laws [1] are essential in mathematics and physics that explain values that do not change over time and represent the 
underlying dynamics and symmetries of a system. They represent laws of physics like conservation of mass, energy, and 
momentum, which state that the overall amount of these attributes does not change when a system changes. The conservation laws 
are essential to the formulation and analysis of models in mathematics, especially partial differential equations (PDEs), as they 
provide information on the behaviour and integrability of a system. When a PDE has many conservation laws, it is considered 
integrable, suggesting that there may be underlying symmetries and allowing for the investigation of exact solutions and other 
analytical methods. A foundational work in mathematical physics, Noether’s theorem [2] reveals a deep relationship between 
conservation laws and symmetries [3], especially when it comes to Euler-Lagrange equations that are derived from variational 
principles. This theorem provides a useful tool for deriving conservation laws from the symmetries inherent in the underlying 
physical or mathematical system. It creates a direct correlation between significant generalised variational symmetries of 
functional and nontrivial conservation laws. This relationship makes it possible to build conservation laws for Euler-Lagrange 
equations in a systematic way, as shown in studies [4], clarifying the conservation of significant physical quantities. However, 
scholars have expanded and generalised Noether’s approach to developing conservation laws for systems that do not directly 
derive from variational principles, including single evolution equations [5-16]. This allows researchers to investigate conservation 
characteristics even in non-variational situations. These generalisations of Noether’s approach give valuable understandings into 
the conservation features of other mathematical and physical systems other than those derived from variational principles, 
increasing the applicability of Noether’s theorem. Among these generalisations, Ibragimov [5] introduced several key concepts, 
such as the adjoint equation, strictly self-adjointness, quasi-self-adjointness, and nonlinear self-adjointness, to extend Noether’s 
methodology for identifying conservation laws. He developed an effective technique for determining conservation laws for a 
combined system containing of the primary equation and its adjoint. This approach allows the derivation of conservation laws 
using a formal Lagrangian, 𝐿, which includes a nonphysical variable, 𝑣. When the equation exhibits (nonlinear) self-adjointness, a 
particular substitution can be employed to eliminate 𝑣, yielding the conservation law of our main equation. Conversely, if the 
equation does not possess self-adjoint properties, the conservation laws derived for every symmetry can be explained as local 
conservation laws of the combined system. These conservation laws retain the original equation’s symmetry characteristics, giving 
useful information even in the absence of self-adjointness. Following Ibragimov’s pioneering work, several scholars have reached 
into this fascinating field, resulting in an extensive body of literature. Many publications have been published on the subject, 
including those mentioned in [17-22], as well as countless more relevant studies noted there. These studies have helped to further 
our understanding of conservation laws for systems defined by partial differential equations, providing new viewpoints, 
approaches, and applications. The derivations of Lie symmetries, and conservation laws of fractional-order partial differential 
equations [23] is also very challenging. 
 

The 1 1  reaction-diffusion equation [24] examined in the paper is expressed as: 
 

𝑦 𝜌𝑦 𝑧 𝑥 𝑦 𝑦 ,   (1) 
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where 𝑦 𝑦 𝑥, 𝑡  denotes the population density, 𝜌 0  is a constant signifying the diffusion rate, and 𝑧 𝑥  is the variable 
coefficient representing the spatially dependent growth rate of the population. This equation, known as the diffusive logistic 
equation, models the population dynamics within an environment characterized by spatial heterogeneity. The growth rate 𝑧 𝑥  
reflects the habitat’s spatial variability, being positive in regions conducive to growth and negative in less favourable areas. 
Cantrell and Cosner [24] explored the impact of this spatial heterogeneity on the modeled population dynamics. When the 
coefficient 𝑧 𝑥  is a constant, denoted as 𝑧, the equation simplifies to: 
 
𝑦 𝜌𝑦 𝐴 𝑦 ,   (2) 
 
where 𝐴 𝑦 𝑧𝑦 𝑦 .This form of the equation is recognised as the nonlinear heat equation [25] when𝑑 1. The nonlinear 
term 𝐴 𝑦  captures the effects of the interaction between diffusion and reaction processes on population dynamics. 
 
Ide and Okada focused on creating numerical schemes of equation (1) while making sure that energy properties are maintained in 
their work [26]. This is important because, in numerical simulations, particularly in physical systems, energy conservation is 
frequently a desired property. Their goal was to correctly capture the dynamics of the population given by equation (1) without 
adding misleading numerical artefacts by creating numerical schemes that preserve energy conservation. To confirm the 
effectiveness of their proposed numerical systems, they also carried out numerical experiments. To confirm the accuracy and 
stability of their numerical approaches, these tests probably entailed employing the numerical schemes they established to simulate 
the population’s behaviour over time and comparing the findings with analytical solutions or known system characteristics. 
 
The research begins by addressing the determining equations to identify the infinitesimal generator, which allows the classification 
of equation (1) into three distinct categories. Following this, the study focuses on deriving the form of the conservation law that 
corresponds to each identified symmetry generator type. An in-depth analysis of the self-adjointness of equation (1) is conducted 
to further reveal the nature of these conservation laws. As per the theorem referenced in [27], it is demonstrated that no local 
conservation law exists for equation (1). Nonetheless, utilising Ibragimov’s formula, conservation laws are formulated for each 
symmetry type. Lastly, the derived symmetry group and an alternative method, exact solutions are established for the final two 
classifications of equation (1), providing comprehensive insights into its behaviour and solutions. 
 
The organisation of this research is outlined in the following look: Section 2 provides introduction, including a detailed 
presentation of Ibragimov’s theorem. Additionally, it covers foundational concepts and sets the stage for the subsequent analysis 
by summarising key theoretical frameworks and methodologies relevant to the study. This comprehensive overview ensures that 
readers are well-prepared for the more technical discussions and findings presented in the later sections of the paper. After that, 
Section 3 begins by using a powerful computational method [4] to solve equation (1) to determine its Lie point symmetries while 
also investigating its self-adjointness. The emphasis of Section 4 is to provide an in-depth review of the conservation laws that are 
part of equation (1). The derivation of many exact solutions for equation (1) is the focus of Section 5. Section 6 concludes the 
report by providing a summary of the main conclusions and implications of the studies. 
 
2. PRELIMINARIES 
 
We rush back Ibragimov’s approach for deriving conservation laws associated with the symmetries of any system of partial 
differential equations (PDEs), assuming the system has an equal number of equations and dependent variables. For simplicity, we 
focus on a scalar evolution equation: 
 
𝐹 𝑥,𝑦,𝑦 , … ,𝑦 0.   (3) 
 
Here,𝑥 𝑥 , 𝑡 , and the dependent variable is 𝑦. The notation 𝑦  represents the set of first-order partial derivatives 𝑦 , while 
𝑦  represents the set of second-order partial derivatives 𝑦 , and so on, with 𝑦 𝜕𝑦/𝜕𝑥  and 𝑦 𝜕 𝑦/𝜕𝑥 𝜕𝑥 , etc. 
 
Definition 2.1 The adjoint equation corresponding to (3) is defined as: 
 
𝐹∗ 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 ,𝑣 0,   (4) 
 
where 
 

𝐹∗ 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 ,𝑣 ,   (5) 

 
with 𝑣 𝑣 𝑥 , 𝑡  serving as a multiplier. 
The variational derivatives, denoted by 
 

∑  ∞ 1 𝐷 ⋯𝐷
⋯

,   (6) 

 
represent the Euler-Lagrange operator, where 
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𝐷 𝑦 𝑦 ⋯,   (7) 

 
accounts for total differentiation. We apply equation (3) to a system in the following way: 
 
𝛿 𝑣𝐹
𝛿𝑣

𝐹 𝑥,𝑦,𝑦 , … ,𝑦 0, 

                                                                  (8) 
𝛿 𝑣𝐹
𝛿𝑦

𝐹∗ 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 ,𝑣 0. 

 
Ibragimov [15] demonstrated that the system (8) preserves all symmetries of the original equation (3). Using Noether’s identity 
[15], he developed a formula for the conservation law of each symmetry of (3). This method generates conservation rules for 
PDEs in a systematic manner by utilising their symmetries and adjoint systems. 
 
Theorem 2.1 Each Lie point, Lie-Backlund, or nonlocal symmetry, 
 

𝑋 𝜉 𝑥,𝑦,𝑦 , … 𝜂 𝑥,𝑦,𝑦 , … ,   (9) 

 
of (3) yields a conservation law: 𝐷 𝒯 0 for (8). The conserved vector is formulated as 
 

𝒯 𝜉 𝐿                                                                  (10) 
 

𝑤
𝜕𝐿
𝜕𝑦

𝐷
𝜕𝐿
𝜕𝑦

𝐷 𝐷
𝜕𝐿
𝜕𝑦

⋯  

 

𝐷 𝑤
𝜕𝐿
𝜕𝑦

𝐷
𝜕𝐿
𝜕𝑦

𝐷 𝐷
𝜕𝐿

𝜕𝑦
⋯  

 

𝐷 𝐷 𝑤
𝜕𝐿
𝜕𝑦

𝐷
𝜕𝐿

𝜕𝑦
⋯ ⋯, 

 
in Theorem 2.1, 𝑤 and 𝐿 are written in the following form: 
 
𝑤 𝜂 𝜉 𝑦 ,    𝐿 𝑣𝐹 𝑥,𝑦,𝑦 , … ,𝑦 .       (11) 
 
Our main equation (1) is of the second-order equation, so (10) can be written as: 
 

𝒯 𝜉 𝐿 𝑤 𝐷 𝐷 𝑤 .      (12) 

 
It is clear from Theorem 2.1 that any symmetry in equation (3) has the capacity to produce a conservation law. These conservation 
laws usually depend on the multiplier 𝑣 in addition to the original variables of the equation. In some cases, the multiplier 𝑣 can be 
eliminated from the conservation law if the equation (3) has the self-adjointness feature. 
 
Definition 2.2 Equation (3) is defined as self-adjoint if, when the adjoint equation (4) is transformed by substituting 𝑣 𝑢, the 
resulting equation 
 
𝐹 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 , 𝑣 0,   (13) 
 
is same as our main equation (3). This condition implies that 
 
𝐹 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 , 𝑣 𝑣 𝑦                                   (14) 
 
𝜂 𝑥,𝑦,𝑦 , … 𝐹 𝑥,𝑦,𝑦 , … ,𝑦 , 

 
where 𝜂 is a function that depends on 𝑥, 𝑦, and the partial derivatives of 𝑦. 
 
Definition 2.3 Equation (3) is termed quasi-self-adjoint if the adjoint equation (4), transformed under the substitutions 𝑣 𝜓 𝑦  
where 𝜓 𝑦  is a specific function with 𝜓′ 𝑦 0, leads to an equation 
 
𝐹∗ 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 ,𝑣 0,   (15) 
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that exactly matches the original equation (3). 
 
Definition 2.4 Equation (3) is classified as weakly self-adjoint if, upon substituting 𝑣 𝜓 𝑥,𝑦  into the adjoint equation (4), 
where 𝜓 𝑥,𝑦  is a function such that 𝜓 0 and 𝜓 0, the resulting equation 
 
𝐹∗ 𝑥,𝑦, 𝑣,𝑦 ,𝑣 , … ,𝑦 ,𝑣 0,   (16) 
 
is look like our equation (3). 
 
This means the transformed adjoint equation retains the equal form as the initial equation, ensuring that the properties of the 
original equation are preserved under the specified substitutions. 
 
Definition 2.5 Equation (3) exhibits nonlinear self-adjointness when there are functions 𝑣 𝜓 𝑥,𝑦  that satisfy the adjoint 
equation (4) for all solutions 𝑦 𝑥  of (3), alongside the condition that 𝜓 𝑥,𝑦 0. 
 
Ibragimov in [5, 11, 28] proposed the initial three definitions, respectively, while the fourth was initially presented by Gandarias in 
[29]. Subsequently, Ibragimov extended this definition in [15] under the appearance of Definition 2.5. Hence, nonlinear self-
adjointness emerges as the broadest concept, encompassing the others as mere special cases. 
 
Theorem 2.2 The form that characterised any local conservation law [27] relevant to a second order (1+1)-dimensional 
quasilinear evolution equation is written as: 
 
𝑦 𝑆 𝑥, 𝑡,𝑦,𝑦 𝑦 𝐴 𝑥, 𝑡,𝑦,𝑦 ,   (17) 
 
where 𝑆 𝑥, 𝑡,𝑦,𝑦 0, is necessarily of the first order. 
 
Furthermore, it is possible to identify a conserved vector composed of a density 𝑇, which is contingent upon 𝑡, 𝑥, and 𝑦 at most, 
and a flux 𝑋, dependent on 𝑡, 𝑥, 𝑦, and 𝑦  at most. 
 
3. ANALYSIS OF SELF‐ADJOINTNESS AND DETERMINING LIE POINT SYMMETRIES 
 
Here, we work on the self-adjointness of equation (1) and develop a generic Lie group of point transformations that maintains 
equation (1) invariant. 
 
The following is the shape of our one-parameter Lie group of infinitesimal transformations: 
 
𝑥 ⟶ 𝑥 εξ 𝑥, 𝑡,𝑦 , 
𝑡 ⟶ 𝑡 εξ 𝑥, 𝑡,𝑦 ,                                     (18) 
𝑦 ⟼ 𝑢 εη 𝑥, 𝑡,𝑦 , 
 
here 𝜀 ≪ 1. We define the symmetry generator for the group transformations (18) , which takes the following look: 
 

𝒳 𝜉 𝑥, 𝑡,𝑦 𝜉 𝑥, 𝑡,𝑦 𝜂 𝑥, 𝑡,𝑦 .   (19) 

 
The highest order of equation (1) is two, so we apply the second prolongation 

𝑝𝑟 𝒳 𝒳 𝜂 𝜂 𝜂 𝜂 𝜂 .          (20) 

The coefficient functions 𝜉 𝑥, 𝑡,𝑦 , 𝜉 𝑥, 𝑡,𝑦 , and 𝜂 𝑥, 𝑡,𝑦  will satisfy the symmetry condition which the defined as:  
 
𝜂 𝑑𝜂 𝑧 𝑥 𝑦𝜉 𝑥, 𝑡,𝑦 𝑧 𝑥 𝜂 𝑥, 𝑡,𝑦 2𝑦𝜂 𝑥, 𝑡,𝑦 0,       (21) 

 
we can observe that 𝜂 , 𝜂  are the coefficients which appear in prolongation equation (20) and we get the following system:  
 
𝜂 𝐷 𝜂 𝑥, 𝑡,𝑦 𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦 𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦 ,
𝜂 𝐷 𝜂 𝑥, 𝑡,𝑦 𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦 𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦

2𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦 2𝑦 𝐷 𝜉 𝑥, 𝑡,𝑦 ,
      (22) 

 
𝐷 ,𝐷  with respect to 𝑥 and 𝑡 can be found using equation (7) which are the The total derivatives. 
 
Substitute system of equations (22) into equation (21) and replace 𝑦  by 𝑑𝑦 𝑧 𝑥 𝑦 𝑦 . We find determining equations by 
equating the coefficients of the first- and second-order partial derivatives of 𝑦:  
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𝜉 0,   (23) 
 
𝜉 0,                                                                                             (24) 
 
𝜂 0,   (25) 
 
𝜉 0,   (26) 
 
𝜌𝜉 2𝜌𝜉 0,   (27) 

 
𝜉 2𝜌𝜂 𝜌𝜉 0,   (28) 

 
𝑧 𝑥 2𝑦 𝜂 𝑦𝜉 𝑧 𝑥 𝑦 𝑦𝑧 𝑥 𝜂 𝜂 𝑦 𝑦𝑧 𝑥 𝜉 𝜌𝜂 0.   (29) 

 
We find the solution from equation (23)-equation (27) very easily:  
 
𝜉 𝑥, 𝑡,𝑦 𝜉 𝑡 ,
𝜂 𝑥, 𝑡,𝑦 𝐹 𝑥, 𝑡 𝑦 𝐹 𝑥, 𝑡 ,

𝜉 𝑥, 𝑡,𝑦 𝜉 𝑡 𝑥 𝐹 𝑡 ,
                                     (30) 

 
for some unknown functions 𝐹 𝑥, 𝑡 ,𝐹 𝑥, 𝑡 , and 𝐹 𝑡 . We substitute equation (30) in the equations (28) and equation (29), 
which gives us the following system:  
 
𝜉 𝑥, 𝑡 2𝜌𝐹 𝑥, 𝑡 0,   (31) 

 

𝑧 𝑥 𝐹 𝑥, 𝑡 𝑦 𝐹 𝑥, 𝑡 𝑧 𝑥 𝑦 𝜉 𝑡 𝑥 𝐹 𝑡 𝑦𝑧 𝑥 𝐹 𝑥, 𝑡

𝑦𝑧 𝑥 𝜉 𝑡 𝑦 𝐹 𝑥, 𝑡 𝜉 𝑡 𝑦 2𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡
𝜌𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 𝜌𝐹 𝑥, 𝑡 0.

  (32) 

 
We know that 𝑧 𝑥  is not known; we break equation (32) into such a way that a part contains 𝑧 𝑥  and 𝑧 𝑥  and other without 
them:  
 

𝑧 𝑥 𝐹 𝑥, 𝑡 𝑧 𝑥 𝑦 𝜉 𝑡 𝑥 𝐹 𝑡 𝑦𝑧 𝑥 𝜉 𝑡 0,  (33) 

 
𝑦 𝐹 𝑥, 𝑡 𝜉 𝑡 𝑦 2𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 𝜌𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 𝜌𝐹 𝑥, 𝑡 0.  (34) 
 
By rearranging equation (34) in the following way:  
 

𝑦 𝑧 𝑥 𝜉 𝑡 𝑧 𝑥 𝜉 𝑡 𝑥 𝐹 𝑡 𝑧 𝑥 𝐹 𝑥, 𝑡 0.  (35) 

 
We compare the coefficients of 𝑦 and write the equations:  
 

𝑧 𝑥 𝜉 𝑡 𝑧 𝑥 𝜉 𝑡 𝑥 𝐹 𝑡 0,  (36) 

 𝑧 𝑥 𝐹 𝑥, 𝑡 0. 
 
Again, compare the coefficients of 𝑦 ,𝑦 and constant in equation (34).  
 
𝐹 𝑥, 𝑡 𝜉 𝑡 0,   (37) 
 
2𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 𝜌𝐹 𝑥, 𝑡 0,   (38) 
 
𝐹 𝑥, 𝑡 𝜌𝐹 𝑥, 𝑡 0.   (39) 
 
From equation (37)  
 
𝐹 𝑥, 𝑡 𝜉 𝑡 , 𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 0,   (40) 
 
Equation (38) provides 
 
𝐹 𝑥, 𝑡 𝐹 𝑥, 𝑡 0,   (41) 
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We find that equation (39) is 
𝐹 𝑥, 𝑡 0,   (42) 
 
and 𝐹 𝑥, 𝑡  is a constant. We obtain that equation (31) into reduced form which is the the following:  
 

𝜉 𝑡 𝑥 𝐹 𝑡 0.   (43) 

 
We compare the coefficients of 𝑥 and constant in equation (43), which give us 𝜉 𝑡 0,𝐹 𝑡 0, and we find 
 
𝜉 𝑡 𝑞 𝑡 𝑞 ,𝐹 𝑡 𝑞 ,   (44) 
 
where 𝑞 ,𝑞  and 𝑞  are arbitrary constants. We get 𝐹 𝑥, 𝑡 0 and the general solution of the system (31):  
 

𝜉 𝑥, 𝑡,𝑦 𝑞 𝑥 𝑞 ,

𝜉 𝑥, 𝑡,𝑦 𝑞 𝑡 𝑞 ,
𝜂 𝑥, 𝑡,𝑦 𝑞 𝑦.

  (45) 

 
We investigate equation (35) and substitute all the required values, and we find 
 

𝑞 𝑥 𝑞 𝑧 𝑥 𝑞 𝑧 𝑥 0.     (46) 

 
By dealing with arbitrary constants 𝑞 , we can classify equation (1) in the following three types:  
 
Case 1. 
 
When 𝑞 1, 𝑞 𝑞 0, 𝑧 𝑥  will remain free function and equation (1) Will have 
the following infinitesimal generator:  
 
𝒳 𝜕 .             (47) 
 
So, equation (1) does not depend on 𝑡.  
 
 Case 2. 
  

When 𝑞 1, 𝑞 𝑞 0, 𝑥𝑧 𝑥 𝑧 𝑥 0 and solve for 𝑧 𝑥 , which is 𝑧 𝑥 , where 𝑞  is known to be an integral 

constant and the infinitesimal generator provides the following symmetry:  
 

𝒳 𝑥𝜕 𝑡𝜕 𝑦𝜕 .     (48) 

 
Our main equation (1) gets the following new form:  
 
𝑦 𝜌𝑦 𝑦 𝑦 0,    (49) 

 
having the infinitesimal generators 𝒳 ,𝒳 . We build a table of the commutation of the Lie algebra generated by using the infinite 
symmetries, represented by Table 1:  
 

Table 1: The Commutator Table. 
 

   
   
   

 
Case 3.  
 
When 𝑞 1, 𝑞 𝑞 0, 𝑧 𝑥 𝑧, where 𝑧 is a constant, and the infinitesimal 
generator is gives the following third symmetry:  
 
𝒳 𝜕 .   (50) 
 
Equation (1) will be of the following form:  
 
𝑦 𝜌𝑦 𝑧𝑦 𝑦 0,   (51) 
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with two infinitesimal generators 𝒳 ,𝒳 . The commutator table of the Lie algebra obtained by the infinite symmetries is:  
 

Table 2: The Commutator Table. 
 

 
 
 
We define the adjoint equation for equation (1)  
 

𝒜∗ 𝑣 𝑥, 𝑡 𝒜   (52) 

 𝑣𝑧 𝑥 2𝑣𝑦 𝑣 𝜌𝑣 0. 
 
For 𝜌 0, equation (1) is not to be a strictly self-adjoint, so we set 𝑣 Υ 𝑦  in (52).  
 
𝒜∗| Υ 𝑦 𝑧 𝑥 2𝑦Υ 𝑦   (53) 
 Υ 𝑦 𝑦 𝜌Υ 𝑦 𝑦 𝜌Υ 𝑦 𝑦 . 
 
We use equation (14), which gives 
 
𝒜∗| Λ𝒜 𝑦 Λ Υ 𝑦 𝜌𝑦 Λ Υ 𝑦   (54) 

 Λ𝑦𝑧 𝑥 Λ𝑦 𝜌Υ 𝑦 𝑦 Υ 𝑦 𝑧 𝑥 2𝑦Υ 𝑦 0. 
 
If we compare the coefficients of 𝑦  and 𝑦 , we get 
 
Λ Υ 𝑦 0, and Λ Υ 𝑦 0.   (55) 
 
It means that equation (1) is not quasi-self-adjoint, when 𝑑 0.  
Again, we set 𝑣 Υ 𝑥, 𝑡,𝑦 , and we investigate 
 
𝒜∗| , , Λ 𝑥, 𝑡,𝑦,𝑦 , … 𝒜,   (56) 
 
with total derivatives  
 
𝑣 𝐷 ℎ 𝑥, 𝑡,𝑦 Υ 𝑥, 𝑡,𝑦 ⋅ 𝑦 Υ 𝑥, 𝑡,𝑦 ,
𝑣 𝐷 ℎ 𝑥, 𝑡,𝑦 Υ 𝑥, 𝑡,𝑦 ⋅ 𝑦 Υ 𝑥, 𝑡,𝑦 ,
𝑣 𝐷 𝑣 Υ 𝑥, 𝑡,𝑦 ⋅ 𝑦 Υ 𝑥, 𝑡,𝑦 ⋅ 𝑦

2Υ 𝑥, 𝑡,𝑦 ⋅ 𝑦 Υ 𝑥, 𝑡,𝑦 .

  (57) 

 
Substitute equation (57), 𝑣 Υ 𝑥, 𝑡,𝑦  in equation (52) and compare the coefficients of derivatives terms of 𝑦, we find 
 
Λ Υ 𝑥, 𝑡,𝑦 0,   (58) 
 
Υ 𝑥, 𝑡,𝑦 𝑧 𝑥 2Υ 𝑥, 𝑡,𝑦 𝑦 Υ 𝑥, 𝑡,𝑦 𝜌Υ 𝑥, 𝑡,𝑦 0.  (59) 

 
Equation (59) needs to hold true for all values of 𝑡, 𝑥, and 𝑦. Upon eliminating the coefficient of 𝑦 we obtai Υ 𝑥, 𝑡,𝑦 0. 
Therefore, based on Definition 2.5, when 𝜌 0, equation (1) does not exhibit quasi-self-adjointness and nonlinear self-
adjointness.  
 

4. CONSERVATION LAWS 
 
This section, we find conserved vectors 𝒯 ,𝒯 , by applying Theorem 2.2 on equation (1) using equation (52) by using the Lie 
point symmetries, which fulfil the conservation equation 
 

𝐷 𝒯 𝐷 𝒯 |𝒜 ,𝒜∗ 0.   (60) 
 

We have three infinitesimal generators, so there are three different cases through which we find conserved vectors.  
 
 Case 1 
 

Equation (12) helps to yield the following conserved vectors when we have 𝑤 𝑦  for 𝒳 .  
 

𝒯 𝑣 𝜌𝑦 𝑧 𝑥 𝑦 𝑦 ,  (61) 
 𝒯 𝜌𝑦 𝑣 𝜌𝑣𝑦 . 

⋅,⋅  𝒳  𝒳  
𝒳  0 0 
𝒳  0 0 
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There is an arbitrary solution 𝑣 of equation (52) in these conserved vectors and with the help of Mathematica, we obtain:  
 
𝐷 𝒯 𝐷 𝒯 𝑦 𝜌𝑣 𝑣 𝑧 𝑥 𝑣 2𝑦𝑣 .   (62) 
 
 Case 2 
 

 Here, for 𝒳  we get nontrivial conserved vectors when we have 𝑤 𝑦 𝑥𝑦 𝑡𝑦  

 

𝒯 𝑣 𝑡𝑦 𝑡 𝑦 𝑦 𝑥𝑦 𝑡𝜌𝑦 ,

𝒯 𝑥𝑣 𝑦 𝑦 𝑦

𝜌𝑣 𝑦 𝑥𝑦 𝑡𝑦 𝜌𝑣 𝑦 𝑡𝑦 .

  (63) 

 
Like case 1, conserved vectors in this case contain an arbitrary solution 𝑣 to equation (52), and using Mathematica, we find the 
following equation:  
 
𝐷 𝒯 𝐷 𝒯

𝑦 𝑥𝑦 𝑡𝑦 𝜌𝑣 𝑣 𝑣 2𝑦𝑣

𝑣 𝑦 𝜌𝑦 𝑦 𝑦 .

  (64) 

 
 Case 3 
 The symmetry 𝒳  when we have 𝑤 𝑦  provides nontrivial conserved vectors with the help of equation (12).  
 
𝒯 𝑦 𝑣   (65) 
𝒯 𝑣 𝑦 𝑏𝑦 𝑦 𝜌𝑦 𝑣 . 
 
There is an arbitrary solution 𝑣 to equation (52), and we use Mathematica software, and find 
 
𝐷 𝒯 𝐷 𝒯 𝑦 𝜌𝑣 𝑣 𝑏𝑣 2𝑦𝑣 .   (66) 
 
The conserved vectors that we discovered are exclusive to equation (1) and equation (53), but they are not locally relevant to 
equation (1) on their own. It follows that equation (1) does not contain a local conservation law. 
 
There is the density 𝒫 𝒫 𝑥, 𝑡,𝑦  and the flux ℱ ℱℓ 𝑥, 𝑡,𝑦,𝑦  for equation (1) in view of Theorem 2.2.  
 
𝐷 𝒯 𝐷 ℱ | 0,   (67) 

 
and we get 
 
𝒯 𝒯 𝜌𝑦 𝑦 𝑧 𝑥 𝑦   (68) 
ℱ ℱ 𝑦 ℱ 𝑦 0. 

 
We get the coefficient of 𝑦 .  
 
𝜌𝒯 𝑥, 𝑡,𝑦 ℱ 𝑥, 𝑡,𝑦,𝑦 0;   (69) 
 
therefore  
 
ℱ 𝑥, 𝑡,𝑦,𝑦 𝜌𝒯 𝑥, 𝑡,𝑦 𝑦 ℱ 𝑥, 𝑡,𝑦 .   (70) 
 
Comparing the coefficients of the powers of 𝑦  in the rest of (68), on the functions 𝒯 𝑥, 𝑡,𝑦  and ℱ 𝑥, 𝑡,𝑦 , we derive the system 
of PDEs.  
 
𝑦 : 𝜌𝒯 𝑥, 𝑡,𝑦 ℱ 𝑥, 𝑡,𝑦 0,

𝑦 : 𝜌𝒯 𝑥, 𝑡,𝑦 0,

1: 𝒯 𝑥, 𝑡,𝑦 𝒯 𝑥, 𝑡,𝑦 𝑦 𝑧 𝑥 𝑦 ℱ 𝑥, 𝑡,𝑦 0.

  (71) 

 
 In consideration of (71), we suppose the following equation for 𝜌 0:  
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𝒯 𝑥, 𝑡,𝑦 𝜂 𝑥, 𝑡 𝑦 𝒯 𝑥, 𝑡 ,   (72) 
 
 and  
ℱ 𝑥, 𝑡,𝑦 𝜌𝜂 𝑥, 𝑡 ,   (73) 
 
 so  
 
ℱ 𝑥, 𝑡,𝑦 𝜌𝜂 𝑥, 𝑡 𝑦 ℱ 𝑥, 𝑡 .   (74) 
 
 Now  
 
ℱ 𝑥, 𝑡,𝑦,𝑦 𝜌𝜂 𝑥, 𝑡 𝑦 𝜌𝜂 𝑥, 𝑡 𝑦 ℱ 𝑥, 𝑡 .   (75) 
 
 Equations (72) and (75) are substituted into third equation of system (71)  
 
𝜂 𝑥, 𝑡 𝑦 𝒯 𝑥, 𝑡 𝜂 𝑥, 𝑡 𝑦 𝑧 𝑥 𝑦   (76) 
𝜌𝜂 𝑥, 𝑡 𝑦 ℱ 𝑥, 𝑡 0. 

 
The reason we say 𝒯 𝑥, 𝑡 ℱ 𝑥, 𝑡 0 is that they only add to the conservation law’s trivial section. The system of PDEs on 
𝜂 𝑥, 𝑡  is obtained by splitting equation (76) regarding the powers of 𝑦 
 
𝑦: 𝜂 𝑥, 𝑡 𝜌𝜂 𝑥, 𝑡 𝑧 𝑥 𝜂 𝑥, 𝑡 0,  (77) 
𝑦 : 𝜂 𝑥, 𝑡 0. 
 
𝜂 𝑥, 𝑡 0 is the solution for this system, according to equation (77). This indicates that there are no local conservation laws in 
equation (1).  
 
5. EXACT SOLUTIONS 
 
For equation (49), we obtain scale-invariant solutions, and for equation (51), we find out travelling wave solutions.  
 
Scale-Invariant Solution 
 
We consider 
 

𝒳 𝑥𝜕 𝑡𝜕 𝑦𝜕 ,   (78) 

 
We define a corresponding scaling group 
 
𝑥, 𝑡,𝑦 ⟼ Λ / 𝑥,Λ𝑡,Λ 𝑦 ,Λ ∈ ℝ .   (79) 

 
The functions on the half space 𝑥, 𝑡,𝑦 , 𝑡 0  related to this one parameter group give the global invariants.  
 

𝛾 𝑡 𝑥,    𝑣 𝑡𝑦;   (80) 
 
then  
𝑦 𝑡 𝑣,
𝑦 𝑡 𝑣 ,

𝑦 𝑡 𝑣 ,

𝑦 𝑡 𝑣 𝛾𝑣 .

  (81) 

Substitute equation (81) into (48) and we get:  
 

𝑡 𝑣 𝛾𝑣 𝑡 𝜌𝑣 𝑞 𝛾 𝑣 𝑣 .   (82) 

 
The variable 𝑡 does not appear in equation (82) as a parameter. 
 

𝜌𝑣 𝛾𝑣 𝑣 𝑞 𝛾 𝑣 𝑣 0,   (83) 

 
and the scale-invariant solutions are expressed in the reduced form. 
We reduce (83) to the first-order equation when we substitute 𝑣 𝛾 𝜂 𝑣 .  
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𝜌𝜂 𝑣 𝜂 𝑣 𝛾𝜂 𝑣 𝑣 𝑞 𝛾 𝑣 𝑣 0.   (84) 

 
The generic form of equation (84) is 
 
𝛾 𝑥 𝑔 𝑥 𝛾 𝑥 𝑓 𝑥 𝛾 𝑥 𝑓 𝑥 𝛾 𝑥 ,   (85) 

 
where 𝑓 𝑥 , 𝑓 𝑥  are arbitrary functions because this equation is identical to class A of Abel’s second kind. As stated in [30], this 
ordinary differential equation does not currently have a general solution.  
 
Travelling Wave Solutions 
 
We have a special case when 𝑑 1.  
 

𝑎𝑤 𝑧 𝑤 ,   (86) 

 
We put 𝑎 𝑧, 𝑧 1,𝑚 2 using formulation defined in [31], and we get travelling wave solutions 
 
𝑦 𝑥, 𝑡 𝐹 𝒞exp Λ𝑡 𝜇𝑥 ,  (87) 
 
𝑦 𝑥, 𝑡 𝐹 𝒞exp Λ𝑡 𝜇𝑥 , 
 

where Λ 𝑧, 𝜇 , and 𝐹 . We verified these solutions on Maple by using pdetest 

command. We define translation group when 𝜌 1 for equation (51).  
 
 𝑥, 𝑡,𝑦 ⟼ 𝑥 𝑐𝜀, 𝑡 𝜀,𝑦 ,    𝜀 ∈ ℝ.  (88) 
 
This found by using the formula 𝜕 𝑐𝜕 , where 𝑐 is a fixed constant that controls the waves’ speed. Consequently, this group’s 
global invariants are 
 
 𝛾 𝑥 𝑐𝑡,    𝑣 𝑦.  (89) 
 
The appearance of 𝑣 Υ 𝛾  is as follows: A wave with an unchanged profile travelling at a constant speed 𝑐 is found using the 
𝑦 Υ 𝑥 𝑐𝑡 . We solve derivatives by taking the derivative of equation (88) w.r.t𝑥 and 𝑡 in terms of those of 𝑣w.r.t𝑦, and find 
 
𝑦 𝑐𝑣 ,𝑦 𝑣 ,𝑦 𝑣 .   (90) 
 
After substituting these equations, we get ODE for the travelling wave solution 
 
𝜌𝑣 𝑐𝑣 𝑏𝑣 𝑣 0.  (91) 
 
We can find the travelling wave solution of equation (51) if we get the solution of equation (91). We can easily observe its 
invariance under the group translations in the 𝛾 direction.  
 
𝛾, 𝑣 ⟼ 𝛾 𝜀, 𝑣 ,   (92) 

 
with infinitesimal generator 𝒳 𝜕 . We get canonical variables 
 
𝜉 𝜉 𝛾, 𝑣 ,    𝑤 𝑤 𝛾, 𝑣 ,   (93) 
 
by solving the equation (93)  
 

0, 1   (94) 

 
and we find 
 
𝜉 𝛾, 𝑣 𝑣,    𝑤 𝛾, 𝑣 𝛾.   (95) 
 
Then  
 

, ,   (96) 
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so equation (91) becomes  
 

𝜌 𝑐 𝑧𝜉 𝜉 0,   (97) 

 
which is a first-order equation for 𝜚 𝑤  :  
 

𝜌 𝑐 𝑧𝜉 𝜉 0   (98) 

 
that is 
𝜌𝜚 𝑧𝜉 𝜉 𝜚 𝑐𝜚 .   (99) 
 

When we set 𝜚 , we get 

 

𝜔 𝑧𝜉 𝜉 𝜔.                       (100) 

 
Substitute 𝜉 𝜉 , and equation (100) takes the following form:  

 

𝜔 𝜔 𝜉 𝜉 .                      (101) 

 

If  defined in [32], we can find the solution of equation (101) by using the elliptic Weierstrase function. If , the 

solution described the parametric ally in this form: 
 
𝜉 5𝑎𝑟 𝜓,    𝜔 𝑎𝑟 ℰ ,                      (102) 
 

ℰ 𝑟 4𝜓 1 2𝜓, where 𝑞  is a constant, and 𝑎 ,    𝑟  𝑞 ,𝜓 is known as the classical elliptic 

We ierstrase function 𝜓 𝜓 𝑟 𝑞 , 0,1 .  

We write the solutions parametrically in the following form when :  

 
𝜉 5𝑎ℰ ,    𝜔 𝑎𝑟 ℰ ,                       (103) 
 with ℰ 𝑟 𝜓 ∓ 1.  
 
6. CONCLUSION 
 
We presented several exact solutions to a variable-coefficient (1+1) reaction-diffusion equation, as well as local conservation laws. 
We began our breakdown by doing Lie symmetry analysis, which allowed us to categorise the problem into three different 
categories. Every category has unique Lie point symmetries. We successfully acquired the relevant conservation laws for each 
classified type and expressed them in terms of their respective Lie point symmetries. Our investigation on the solutions of equation 
(49) that are scale-invariant, also use global invariants associated to the one-parameter group 𝒳 . The scale-invariant solution of 
the equation (83) should already lead to a constraint on any solution of this type for (49). Finally, many exact solutions of equation 
(51) are found proving the flexibility and strength: our method can be used to solve various iterations of reaction-diffusion 
equations. This study not only advances our understanding of a variable-coefficient (1+1) reaction-diffusion equations by offering 
exact solutions and conservation laws, but it also demonstrates the use of Lie symmetry analysis in the categorization and 
resolution of complex differential equations. 
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