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Abstract 
 

Recent advances in strategies for soft materials have drawn attention for developing wearable and bioelectronics, transitioning them from rigid to 
soft systems. This shift offers significant advantages, particularly in mechanical compatibility with human tissues. Among these materials, 
conductive nanocomposites stand out as essential components, serving as conductive interconnects in stretchable electronic systems. Despite 
notable progress, optimizing conductive nanocomposites to enhance performance while preserving their mechanical properties remains a 
significant challenge.In this study, we explore the key parameters influencing the performance of conductive nanocomposites through both 
qualitative and quantitative analyses. We begin by summarizing recent advancements in metallic nanocomposites and then delve into the three-
dimensional percolation theory, which provides a theoretical foundation for understanding the random systems of nanocomposites. Additionally, 
we identify critical parameters that can modulate the percolative connections of nanoparticles inside of soft elastomer matrix. Finally, we discuss 
the potential applications of optimized conductive nanocomposites, with a focus on wearable and bio-implantable systems. The article concludes 
with a brief summary and a discussion of the remaining challenges in this field. 
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INTRODUCTION 
 
Elastic and deformable electronics have been in high demand 
due to their capacity for creating wearable and comfortable 
electronic devices. For instance, essential components such as 
sensors (1), actuators (2), energy harvesters (3), and circuits (4) 
have been engineered in stretchable forms to meet the 
requirements of wearable and bio-implantable systems. 
Consequently, materials tailored to match the qualities of these 
components have been extensively researched, including 
ultrathin metal/oxide films (5) and wavy or serpentine thin 
metals (6). However, while these materials meet the demands 
for mechanical durability and sturdiness, their inherent 
brittleness and rigidity make them unsuitable for applications 
requiring mechanical compatibility with human tissues, such as 
organs and skin. To address this challenge and develop 
electronic systems that minimize mechanical mismatches 
between biotic and abiotic interfaces, researchers have focused 
on nanocomposites, which are fabricated by incorporating 
elastic polymers and metallic nanomaterials. Stretchable 
nanocomposites one of the most promising candidates for 
intrinsically stretchable electronics consist of a polymer 
matrix, functional nanoparticles, and an organic medium. 
These materials offer exceptional mechanical properties, such 
as elasticity and stretchability, making them ideal for 
applications requiring seamless integration with human tissues. 
To further enhance their suitability for human-friendly devices, 
researchers are actively investigating ways to optimize 
nanocomposites to achieve superior electrical performance 
without compromising their mechanical integrity. In this work, 
we highlight key advances in the development of stretchable 
and conductive nanocomposites, with a particular emphasis on 
material synthesis and the interplay between mechanical and 
electrical performance.  
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We analyze the theoretical frameworks and parameters that 
govern the electrical behavior of these materials. Specifically, 
we explore recent advancements in metallic nanocomposites, 
focusing on strategies that enhance conductivity. Using 
insights derived from the study of parameters such as three-
dimensional percolation theory, which describes the 
connectivity of conductive nanoparticles, we establish 
qualitative and quantitative relationships between these 
parameters and the resulting material properties. Finally, we 
discuss the practical applications of optimized conductive 
nanocomposites in wearable and bioelectronic systems, 
underscoring their potential to bridge the gap between rigid 
electronics and soft, human-compatible interfaces. 
 
Why dowe need conductive nanocomposites in 
flexible/stretchable electronics? 
 
The demand for conductive nanocomposites in flexible and 
stretchable electronics stems from the transformative shift in 
electronic systems from rigid, planar configurations to 
dynamic, deformable platforms that seamlessly integrate with 
non-traditional surfaces, including the human body. 
Conventional rigid materials, such as silicon and metal films, 
are fundamentally incompatible with the requirements of 
wearable and bio-implantable devices due to their limited 
flexibility, high brittleness, and inability to conform to 
complex, curved surfaces. These limitations have driven a 
significant push toward the development of materials that 
combine the electrical functionality of traditional conductors 
with the mechanical properties of elastomers. Conductive 
nanocomposites, composed of conductive nanofillers 
embedded in elastic polymer matrices, have emerged as a 
promising solution, offering unique advantages that address the 
challenges posed by the mechanical and electrical demands of 
next-generation electronic systems. A key reason for adopting 
conductive nanocomposites is their ability to maintain 
electrical conductivity under large mechanical deformations. 
Devices used in wearable and bioelectronic applications 



frequently undergo dynamic and repeated stresses, including 
bending, stretching, and twisting. Traditional conductive 
materials fail in these scenarios, as they crack or delaminate 
under strain, leading to electrical failure. In contrast, 
nanocomposites leverage conductive nanofillers such as carbon 
nanotubes, graphene, metallic nanoparticles, and nanowires, 
which form interconnected networks within a soft, elastic 
polymer matrix. These networks provide percolative pathways 
for electron transport while allowing the composite to deform 
elastically. This intrinsic stretchability ensures that the 
electrical performance of the nanocomposites remains stable, 
even under extreme strain, making them indispensable for 
applications requiring high mechanical compliance. Another 
critical need for conductive nanocomposites arises from their 
ability to minimize mechanical mismatch between electronic 
systems and biological tissues. Human tissues, such as skin, 
muscles, and organs, exhibit low modulus values and are 
inherently soft and deformable. For wearable electronics or 
bio-implantable devices to function effectively and 
comfortably, they must exhibit similar mechanical properties 
to avoid irritation, tissue damage, or device failure. Rigid 
electronics are prone to causing mechanical stress at the 
interface with soft tissues, which can lead to delamination or 
discomfort during use. Conductive nanocomposites, with their 
tailored elasticity and softness, provide a mechanically 
compatible interface that allows electronic devices to adhere 
conformally to skin or internal organs, ensuring user comfort 
and enhancing device functionality. Conductive 
nanocomposites also address the growing need for lightweight 
and multifunctional materials in modern electronics.  
 
The incorporation of nanofillers enables not only high 
electrical conductivity but also additional functionalities, such 
as thermal conductivity, electromagnetic shielding, and sensing 
capabilities. For example, composites containing graphene or 
carbon nanotubes can simultaneously conduct electricity, 
dissipate heat, and detect strain or pressure, reducing the need 
for separate components (7). This multifunctionality is 
particularly beneficial in space-constrained applications, such 
as wearable health monitors or implantable medical devices, 
where compact and efficient designs are essential. From a 
manufacturing perspective, conductive nanocomposites offer 
significant advantages in terms of processability and 
scalability. Unlike traditional electronic materials, which often 
require high-temperature or vacuum-based processes, 
nanocomposites can be fabricated using solution-based 
techniques such as casting, printing, or spraying (8). These 
methods are not only cost-effective but also compatible with 
large-scale production, enabling the commercialization of 
stretchable electronic devices. Additionally, nanocomposites 
can be tailored to achieve desired electrical and mechanical 
properties by adjusting parameters such as filler type, loading, 
and dispersion, providing unparalleled flexibility in design and 
application. The growing interest in the Internet of Things 
(IoT) and wearable technologies further underscores the 
necessity of conductive nanocomposites. As devices become 
increasingly interconnected and portable, there is a need for 
flexible materials that can withstand daily wear and tear 
without sacrificing performance. Conductive nanocomposites 
meet this requirement, enabling the development of wearable 
devices that monitor health parameters, power themselves 
through energy harvesting, and communicate wirelessly with 
external systems. These capabilities are driving innovation in 
healthcare, fitness, and consumer electronics, creating a 
demand for materials that combine reliability with adaptability. 

In summary, the need for conductive nanocomposites in 
flexible and stretchable electronics stems from their ability to 
address the limitations of traditional materials while unlocking 
new possibilities for device functionality and integration. Their 
unique combination of electrical conductivity, mechanical 
compliance, multifunctionality, and processability makes them 
indispensable for a wide range of applications, from wearable 
sensors and medical implants to energy storage devices and 
electronic skins. As research in this field continues to advance, 
conductive nanocomposites are poised to play a central role in 
shaping the future of soft and human-compatible electronics. 
 
Recent progresses in metallic nanocomposite 
 
General metals are often stiff and bulky, making them 
incompatible with soft electronics, which are typically attached 
on skin. However, metallic nanomaterials address this issue by 
enabling the creation of stretchable or flexible composite 
materials. These nanomaterials exhibit unique electrical, 
thermal, and magnetic properties derived from their 
dimensions. Like bulk metals, metallic nanomaterials possess 
exceptional electrical and thermal conductivities. When mixed 
with an elastic polymer, they form conductive nanocomposites 
that are both soft and conductive. Within this soft matrix, 
metallic nanomaterials create conductive pathways based on a 
percolation network, enabling effective electrical conductivity 
while retaining mechanical flexibility. Metallic nanomaterials 
can be categorized by their dimensions, including 0D 
(nanoparticles), 1D (nanowires), and 2D (nanosheets) 
structures (Figure 1). Zero-dimensional (0D) metallic 
nanomaterials, such as gold, palladium, silver, and platinum 
nanoparticles, have been extensively explored. However, 
constructing a conductive percolation network solely with 0D 
nanomaterials remains challenging as their shape is not 
advantageous to form network. To overcome this limitation, 
0D nanomaterials are often combined with 1D and 2D 
counterparts to enhance electrical conductivity without 
compromising the mechanical properties of the composite (9). 
Two-dimensional (2D) nanomaterials, such as nanosheets or 
flakes, are particularly advantageous for forming conductive 
pathways due to their larger contact area, which facilitates 
better connectivity between fillers compared to the point 
contacts provided by 0D and 1D nanomaterials. Consequently, 
2D nanomaterials are frequently used in conductive 
nanocomposites. To further improve conductivity and 
mechanical properties, 0D nanomaterials are often 
incorporated into 1D and 2D systems, creating hybrid filler 
materials that optimize both electrical and mechanical 
performance.Soft conductive nanocomposites incorporating 
0D, 1D, and 2D metallic nanomaterials have demonstrated 
promising applications. For instance, Kim and colleagues 
fabricated a stretchable conductor composed of gold 
nanoparticles (AuNPs) and a polyurethane (PU) matrix. 
Citrate-stabilized AuNPs, with sizes ranging from 8 to 13 nm, 
were integrated into the PU matrix using two techniques: 
layer-by-layer (LBL) deposition and vacuum-assisted 
flocculation (VAF). Both methods resulted in nanocomposites 
with identical filler content (21.7% by volume). Mechanical 
and electrical properties of the films were analyzed, revealing 
their potential for high-performance stretchable conductors 
(10).In another study, Oh et al. developed a conductive 
composite with remarkable elongation properties. By 
combining methyl isobutyl ketone (MIBK), stretchable rubber, 
and silver (Ag) flakes, they achieved a composite capable of 
stretching up to 400% before breaking. They used flash-
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refine design strategies for improving conductivity in 
nanocomposites. The incorporation of multi-dimensional 
nanomaterials such as 0D, 1D, and 2D structures offers 
promising avenues for achieving lower percolation thresholds 
and enhancing the overall performance of conductive 
composites. Moreover, the integration of hybrid nanomaterial 
systems, combining multiple dimensionalities, holds potential 
for creating more efficient and mechanically stable conductive 
networks. While significant progress has been made in the 
theoretical understanding of percolation theory and its 
application to nanocomposite design, further research is 
necessary to fully comprehend the complex factors influencing 
conductivity and to develop tailored nanomaterials that meet 
the demands of next-generation technologies in fields like 
electronics, energy storage, and biomedical applications. 
Ultimately, advancing the theoretical framework for 
percolation in nanomaterials will continue to guide the 
development of high-performance materials with enhanced 
conductivity and functionality. 
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