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Abstract 
 

The effective implementation of ICT and advanced systems like IoT is essential to modernising educational processes and resource management. 
Higher education system in Libya faces many challenges and barriers such as the lack of clarity on how different readiness factors influence the 
adoption of IoT in LHEIs complicates the prioritisation of initiatives and resource allocation. Therefore, this study seeks to address this gap by 
examining the technological and environmental determinants that influence the readiness of Libyan higher education institutions to adopt IoT 
technology. It also aims to identify the mediating role of IoT readiness between technological, environmental readiness and attitude toward IoT 
adoption in LHEIs among LHEIs. This study utilized a quantitative method for collecting and analyzing the data. Besides, a questionnaire was 
used to collect the data from the sample of the study (409) faculty members and academic professionals in University of Benghazi (UOB) and 
University of Tripoli (UOT) in Libya and data collected via random sampling method. The Smart-PLS4 technique was used to conduct the 
statistical analysis of the collected data. The study’ findings showed that technological and environmental readiness were statistically positively 
influence on IoT adoption and IoT readiness in (LHEIs). Furthermore, IoT readiness was a partial mediating effect between technological, 
environmental readiness and IoT adoption in LHEIs. Moreover, the findings indicated the need to test technological and environmental factors 
that may provide a better explanation of IoT readiness and IoT adoption by the higher education universities sector of developing countries in 
general and Libya in particular. The study is also expected to be significant to stakeholders like decision-makers and educators attempting to 
shed light on technological factors (ICT infrastructure, data governance, security & privacy, compatibility) and environmental factors 
(government support, government regulation, competitive pressure) and its impact on their IoT adoption through IoT readiness in LHEIs as a 
mediating effect. In addition, the study is significant because of its implication for the overall productivity of Libyan universities which integrate 
digital technologies into their teaching and be knowledgeable about the accelerated development in various fields of knowledge. This will 
increase the opportunities for educators to adopt IoT and enhance educational experience for a new generation of learners known as digital 
natives in LHEIs. 
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INTRODUCTION 

 
ICT improves people's lives in many different contexts, 
including security, medical care, and education (Banica et al., 
2017; Zhamanov et al., 2017).In recent years, the Libyan 
government and the Ministry of Higher Education and 
Scientific Research have shown a strong commitment to 
developing the country's educational infrastructure and 
adopting the widespread use of information and 
communication technologies (ICTs), as previously mentioned 
(Alshref et al., 2021; Obaid et al., 2021; Saleh 2020). The 
environment of the Fourth Industrial Revolution (4IR) is 
impacting production and services, including the education 
system (Azah Mansor et al., 2020). The integration of IoT into 
higher education is currently revolutionising the education 
sector. Industrialised nations such as the United States, 
Canada, Europe, and Australia have adopted and developed the 
Internet of Things (Madni et al., 2022; Greengard, 2021; Slimp 
& Bartels, 2019). In addition to other technologies, the Internet 
of Things (IoT) has been suggested as a technology that can 
enhance teaching and learning outside of conventional E-
learning platforms (Aldowah et al., 2017; Li & Pei, 2022; 
Rahman et al., 2016).  
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To develop teaching and learning in the twenty-first century, 
the education sector must modify its old frameworks (Sartaş, 
2015). In contrast to conventional e-learning systems, the IoT 
offers a cutting-edge electronic teaching and learning platform 
with a choice of online learning items (Muskan, 2021; Abbasy 
& Quesada, 2017). Higher education institutions that 
implement IoT can benefit from it for both students and 
faculty. For instance, interactive digital tools like smart 
whiteboards, augmented reality, virtual reality, etc. assist 
teachers in creating immersive learning experiences. The 
Internet of Things can lower the expenses that educational 
institutions must incur while also enhancing their instructional 
systems. Libya is making impressive strides in upgrading its 
higher education system. The Libyan government has launched 
a number of initiatives and agreements to upgrade the 
infrastructure of higher education institutions, with a particular 
focus on incorporating information technology. The goal is to 
develop a comprehensive readiness framework that effectively 
supports the adoption of IoT and provides practical guidelines 
for enhancing IoT adoption in the Libyan higher education 
sector, thereby enhancing the quality of education and aligning 
with the government's efforts to modernise educational 
infrastructure. There is a scarcity of actionable, research-based 
guidelines tailored for the Libyan higher education sector on 
adopting IoT technologies, limiting the ability of institutions to 



implement IoT solutions effectively. Furthermore, the potential 
mediating effect of "IoT readiness in LHEIs" on the 
relationship between technological, environmental readiness 
and attitude toward IoT adoption. is underexplored, suggesting 
a gap in understanding how IoT readiness contributes to 
attitude toward IoT adoption in LHEIs.  
 
Problem statement 
 
The successful adoption of emerging technologies, such as 
IoT, is hindered not by a lack of access but rather by a 
deficiency in comprehension among key stakeholders. 
Decision makers, educators, and the community often resist 
digital transformation due to uncertainties about its effective 
implementation within educational institutions (Azevedo & 
Almeida, 2021; Moreira et al., 2018).Therefore, the effective 
implementation of ICT and advanced systems like IoT is 
essential to modernising educational processes and resource 
management (Mansor et al., 2020; Kamar et al., 2016). Higher 
education system in Libya faces many challenges and barriers 
such as the lack of clarity on how different readiness factors 
influence the attitude toward IoT adoption in LHEIs 
complicates the prioritisation of initiatives and resource 
allocation. Moreover, The potential mediating effect of "IoT 
readiness in LHEIs" on the relationship between readiness 
factors and IoT adoption. is underexplored, suggesting a gap in 
understanding how IoT readiness contributes to attitude toward 
IoT adoption. Scholars in Libya, such as Ramadan et al. (2019) 
and Salem & Mohammadzadeh (2018), believe there is a need 
for additional research from academia and industry on the 
uptake and adoption of ICT technologies in Libyan higher 
education institutions. Thus, this study seeks to address this 
gap by examining the technological and environmental 
determinants that influence the readiness of Libyan higher 
education institutions to embrace IoT technology. It also aims 
to identify the mediating role of IoT readiness between 
technological, environmental readiness and attitude toward IoT 
adoption in LHEIs.  
 
LITERATURE REVIEW 
 
IoT Applications 
 
The IoT solutions spread due to advances in technology. RFID 
tags and low-cost, low energy sensors are prevalent today. 
High bandwidth is afforded to IoT devices by wireless and 
more recent cellular networks. Innovative machine learning 
techniques provide rapid data analysis. In addition, cloud 
computing facilitates storage, transfer, and analysis of data. 
IoT simplifies, enhances, and automates processes as a result 
of this continuous link between machines, humans, and data. 
The combination of sensors, connectivity, and artificial 
intelligence has the potential to increase the efficiency of 
several systems. In recent years, IoT has emerged as one of the 
most significant technologies of the 21st century. Now that we 
can connect everyday objects kitchen appliances, automobiles, 
thermostats, and baby monitors to the internet through 
embedded devices, communication between people, processes, 
and things is frictionless. Physical objects can share and collect 
data with a minimum of human intervention using low-cost 
computers, cloud, big data analytics, and mobile technologies 
(Malekshahi et al., 2020; Gillis, 2022). Digital systems can 
record, monitor, and alter every interaction between connected 
objects in this hyperconnected world. The physical and digital 
worlds interact cooperatively. Increases in the number of 

Internet-connected devices will have several positive effects 
and enormous influences on organisations' operations, goals, 
and strategies (Rahmani et al., 2022; Debnath & Chettri, 202; 
Malekshahi et al., 2020).The literature does, however, show 
that the integration of IoT in higher education is currently poor 
and has to be improved. In higher education institutions in 
developing nations, especially Libya, an adequate evaluation 
of the influence of organisational environments and individuals 
on readiness for IoT adoption is also lacking. Digital systems 
can record, monitor, and alter every interaction between 
connected objects in this hyperconnected world. The physical 
and digital worlds interact cooperatively. Increases in the 
number of Internet-connected devices will have several 
positive effects and enormous influences on organisations' 
operations, goals, and strategies (Rahmani et al., 2022; 
Malekshahi et al., 2020).  
 
The IoT in Higher Education 
 
In light of the Internet of Things' transformative role in 
education as a whole, it is essential to investigate its specific 
implications for Higher education institutions. With their 
complex structures and diverse needs, higher education 
institutions present unique opportunities and challenges for the 
integration of IoT technologies. The adoption of contemporary 
ICT practises in higher education institutions is not a passing 
fad. Universities must endure reforms due to the rapid changes 
occurring in the world, which impact all stakeholders, 
including students, employers, and faculty (Mkrttchian et al., 
2021).As a result of the urgent need to digitalize training and 
education processes for academicians who lack the innate 
technical skills required for online education, higher education 
institutions are undergoing profound transformations. The 
Integration of IoT in Higher Education Higher education 
institutions (HEIs) are often vulnerable to changes in 
governmental directives, social conditions, and technological 
developments since these factors firmly interfere with their 
performance (Laáková et al., 2017). This is the reason HEIs 
have rapidly grown, altering higher education's character to 
become more competitive. This fuels the desire to raise the 
level of services offered through cutting-edge technologies 
(Chweya & Ibrahim, 2021). As an Internet based technology, 
IoT has significant implications for higher education (Chweya 
& Ibrahim, 2021). Saeed et al. (2021) state that IoT is a 
relatively new technology that has taken root in various 
industries, particularly education systems. The widespread use 
of this technology is anticipated to result in additional 
alterations in this area. According to Al-Emran et al. (2020), 
Numerous institutions of higher education around the globe 
adopt IoT in an effort to generate profound changes in their 
performance (teaching, learning, management, training, 
facilities, etc.). IoT spans a variety of disciplines, including 
computer and information science, engineering, the social 
sciences, and mathematics. Bayani et al. (2017) assert that the 
Internet of Things has transformed traditional education 
elements such as institutions, universities, and students into 
smart variants (electronic elements). Due to the fact that a 
significant number of educational institutions are not 
connected to one another or communicate information, the IoT 
is better adapted to fill this void. 
 
Overview of Higher Education in Libya  
 
Higher education in Libya has encountered significant 
transformations over the years, shaped by the country's 
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historical, political, and social contexts. As Libya continues to 
navigate the complexities of post-revolutionary recovery, the 
higher education sector faces both considerable challenges and 
unique opportunities. The history of higher education in Libya 
dates back to the mid-20th century; in December 1955, King 
Idris I of Libya issued a Royal Decree establishing the 
University of Libya in Benghazi. This event is regarded as the 
beginning of the annals of the Higher Education (HE) System 
in Libya. This directive elucidated in greater detail the 
objectives for the establishment of additional institutions. In 
1973, after a period of time had passed, the Libyan University 
was separated into two universities, Benghazi and Tripoli, as a 
manifestation of this direction. According to data provided by 
the Tempus project of the European Commission in 2016, the 
number of universities and institutes for higher technical and 
vocational education in Libya has increased continuously since 
2016 (Al Barhami, 2022; Al-Ashhab & Al Ashhab, 2022; 
Elkhouly et al., 2021; UNIMED, 2020; Rhema, 2018). 
Currently, the higher education system in Libya consists of 26 
public universities located throughout the country, 8 accredited 
private universities, and technical and vocational schools, all of 
which are administered by the Ministry of Higher Education 
and Scientific Research through a dedicated board. The 
number of universities has steadily increased over the past 
decade (Ministry of Higher Education and Scientific Research, 
2023; MEdirections, 2022). 
 
Technology-Organization-Environment (TOE) Model 
 
The Technology Adoption Theory (TOE) is a theoretical 
framework that demonstrates the factors that shape the 
adoption and implementation of technological innovations 
within organisations. The model aims to illustrate the influence 
of the technological, organisational, and environmental context 
on decision-making related to technology innovation. 
Technological context encompasses factors such as 
technological characteristics and availability. environmental 
context encompasses aspects such as market and industry 
structure, technology support and infrastructure, and 
government regulations (Baker, 2012). The technological 
context encompasses both internal organisational equipment 
and practises as well as externally available technologies. 
Moreover, the theory of TOE has a high degree of alignment 
with existing technology adoption theories, hence lacking 
competitive explanatory power and distinctive predictive 
capabilities (Oliveira and Martins, 2011). 
 
Technological Readiness  
 
The assessment of technology utilisation and comprehension 
of the factors influencing acceptance and resistance towards 
technology are essential in formulating policies that promote 
economic progress (Cirera et al., 2022). To achieve successful 
implementation of the IoT, it is necessary to provide 
significant financial resources, ensure the availability of skilled 
personnel capable of efficiently managing IoT operations, and 
conduct a comprehensive assessment of the technology 
readiness level to verify the satisfaction of technological 
requirements (Parra et al., 2021). The adoption of the IoT 
requires comprehensive preparation prior to its execution, 
owing to its complex and innovative nature. It encompasses 
more than only presenting innovative technological 
advancements. The use of IoT solutions necessitates 
organisational adjustments aimed at efficiently generating 
customer value (Zhuankhan & Renken, 2023). Significant 

scholarly attention has been devoted to the examination of 
technological factors that influence the adoption of the Internet 
of Things. In this study, there are three dimensions of 
individual readiness including ICT infrastructure, data 
governance, security & privacy and compatibility. 
 
Environmental Readiness  
 
Environmental readiness examines the external factors that 
influence an institution's ability to adopt IoT. It highlights the 
external drivers and constraints that impact an institution's 
capacity to adopt IoT, emphasising the need for alignment with 
external expectations and regulations. External environmental 
factors influence the adoption decision unquestionably. 
Organisations tend to be scrupulously aware of environmental 
conditions, particularly in their respective businesses (Ismail et 
al., 2023). The impact of the external environment on an 
organisation is an ongoing process that transcends a given 
phase, particularly with regards to the incorporation and use of 
technology (Saghafian et al., 2021). The adoption of IoT is 
influenced by a range of elements within the environmental 
dimension. 
 
Conceptual Framework and Hypotheses Development 
 
The adoption of the IoT is affected by several challenges in 
technological and environmental readiness. Therefore, it is 
crucial to conduct a thorough analysis within a theoretical 
framework to study the factors that support readiness for IoT 
adoption, covering these four essential components. The 
conceptual framework of the current study includes two main 
exogenous variables (technological and environmental 
readiness) and one endogenous variable (IoT adoption) as well 
as one mediating variable (IoT readiness) as shown in Figure 
1. All the variables that made up the constructs were adapted 
from previous studies to ensure content validity.  
 

 
 

Figure 1. Conceptual Framework and Hypotheses Development 
 
Hypotheses development  
 
The relationship between Technological readiness and IoT 
Readiness in LHEIs and IoT Adoption: The term 
“technological readiness” refers to the extent to which an 
organisation has ICT infrastructure, including the hardware, 
software, and networks it needs to function effectively (Chen 
& Lai, 2022; Lutfi et al., 2022; Olushola, 2019; Zhang et al., 
2020; Chweya & Ibrahim, 2021; Yang et al., 2015). Previous 
studies have indicated that the readiness of technology plays a 
crucial role in the effective deployment of IoT projects (Chen 
& Lai, 2022; Ancarani et al., 2019; Olushola, 2019; Dewi et 
al., 2018). Organisations with a technological infrastructure 
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have a greater level of technological preparedness, thereby 
increasing the likelihood of their adoption of the IoT (Martins 
et al., 2016). Hence, in the context of the proposed framework, 
it is postulated by the researcher that technological readiness 
plays a crucial role in determining the level of preparation for 
IoT. Consistent with the findings obtained, hypotheses were 
formulated: 
 
H1: There is a significant positive relationship between 

technological readiness and the adoption of IoT in LHEIs. 
H2: There is a significant positive relationship between 

technological readiness and IoT Readiness in LHEIs.  
 
The relationship between Environmental readiness and 
IoT Readiness in LHEIs and IoT Adoption: Environmental 
factors affect the adoption decision unquestionably. 
Organisations tend to be scrupulously aware of environmental 
conditions, particularly in their respective businesses (Ismail et 
al., 2023). The impact of the external environment on an 
organisation is an ongoing 95 process that transcends a given 
phase, particularly with regards to the incorporation and use of 
technology (Saghafian et al., 2021). The adoption of IoT is 
influenced by a range of elements within the environmental 
readiness construct. Certainly, these environmental dimensions 
have received great attention in the literature (please refer to 
Section 2.12). Environmental readiness is the degree of 
readiness and willingness among organisational users to adopt 
new technology (Zhang et al., 2020; Dewi et al., 2018; Yang et 
al., 2015). Thus, the following hypotheses are proposed: 
 
H3: There is a significant positive relationship between 

environmental readiness and the IoT Adoption in LHEIs. 
H4: There is a significant positive relationship between 

environmental readiness and IoT readiness in LHEIs 
 
The relationship between IoT Readiness in LHEIs and IoT 
Adoption: Technological and environmental with a higher 
level of preparedness for service are more inclined to adopt 
new services and technologies (Ghaleb et al., 2021). The 
outcomes of IoT readiness can be classified into two 
categories: psychological outcomes at the technological level 
and overt outcomes at the environmental level. The prevalent 
psychological outcome variables in the technology adoption 
literature encompass attitude towards technology and intention 
to use technology (Venkatesh et al., 2003). They are frequently 
utilised in empirical research as they can be quantified using 
psychometric instruments, similar to their predecessors (Yang 
et al., 2015). Numerous studies have identified the readiness 
construct as an outcome for assessing preparedness in relation 
to several new technologies, including the Internet of Things, 
cloud computing, and big data (Ghaleb et al., 2021; Chweya & 
Ibrahim, 2021; Yang et al., 2015). Therefore, based on the data 
provided by previous researchers, hypothesis can be developed 
as follows: 
 
H5: There is a significant positive relationship between IoT 

readiness in LHEIs and the IoT Adoption. 
 
Mediating effect of “IoT readiness in LHEIs: Drawing upon 
the range of relations explored between organisational 
readiness (OR) and individual readiness (IR) with the outcome 
of IoT readiness in LHEIs, the current study posits that the 
outcome of IoT readiness may serve as a mediator in the 
relationship between the independent variables of OR, TR, ER, 
and IR and the attitude towards IoT adoption. In this context, 

each of these constructs is carefully examined to elucidate their 
relationships. Accordingly, the following sub-hypotheses are 
articulated to further investigate these dynamics: 
 
H6: IoT readiness in LHELs mediates between technological 

readiness and the IoTAdoption  
H7: IoT readiness in LHELs mediates between environmental 

readiness and the IoT Adoption  
 
METHODOLOGY 
 
Research Design 
 
This study used the quantitative research approach by 
collecting primary data to answer the research questions and to 
test the direct and indirect hypotheses that requires a 
quantitative technique to deal with the data. These methods 
were chosen due to its practically, where time and budget are 
the main constraints.  
 
Population and Sampling 
 
The target of population of the study was the faculty members 
and academic professionals in University of Benghazi (UOB) 
and University of Tripoli (UOT) in Libya. A sample refers to a 
group of individuals selected to serve as the participants of an 
investigation. Given that the study population for this research 
comprises 7189 individuals. The sample size for this study is 
determined to be 368 individuals according to the relevant 
sample size table (Azam et al., 2021). In this study, data will 
collect via a self-administered survey using a sample random 
sampling method. The survey method is carried out among the 
academics and employees of the higher education sector in 
Libyan universities. The respondents included in the survey 
method are the employees and will count to a total number of 
368 respondents. The use of simple random sampling is a 
statistical technique employed to choose a subset of individuals 
from a more extensive population.  
 
Questionnaire Design 
 
This study used the survey method to collect the primary data. 
The online questionnaire is designed at no cost using the 
Google Forms platform. The questionnaire is designed to 
include two parts. The first part includes demographic 
information about the respondents, including gender, age, 
education level, experience years, university name, teaching 
platform and platform used. The second part consists of two 
main exogenous variables (technological and environmental 
readiness) and one endogenous variable (adoption of IoT) as 
well as one mediating variable (IoT readiness). The hyperlink 
will then be sent through email, text message, and (using the 
WhatsUp app) to a selected sample of faculty members at the 
University of Benghazi and the University of Tripoli. 
 
DATA ANALYSIS AND RESULTS  
 
Test of Normality 
 
The guidelines of Hair et al. (2014) have been utilized in the 
current study to take the cut-off critical value of ±2.58 into 
consideration. It is clear from Table 1 that each construct's 
skewness and kurtosis values fell within the specified range (± 
2.58). The descriptive analysis illustrates that almost normal 
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DISCUSSION AND CONCLUSION 
 
The research objectives “in this study have been achieved in 
light of the previous discussion of results. The findings showed 
that there was a significant relationship between technological 
and environmental readiness and IoT readiness in LHEIs and 
IoT adoption. This study is the attempt to determine and 
integrate the technological factors (ICT infrastructure, data 
governance, security & privacy, and compatibility) and 
environmental factors (government support, competitive 
pressure, and government regulation) that influence the 
adoption of IoT in LHEIs. As noted from the results, IoT 
readiness was a partial mediating influence on the relationship 
between technological, environmental, and IoT readiness as 
well as IoT adoption in LHEIs. The study’s findings are 
supported by several previous studies that assert the 
deployment of the Internet of Things depends heavily on 
technological and environmental factors working together 
(Cirera et al., 2022; Yahaya et al., 2018; Sicari et al., 2018). 
The study proposed a TOE framework that accounts for the 
utilisation of the united model within the Internet adoption 
behavior. Moreover, the study results provide solid support for 
the TOE framework model; the R-squared of the TOE model is 
78.7%. This means that the model correctly classifies the 
decisions made with respect to the adoption of IoT in LHEIs. 
The study’s findings confirmed the validity of an empirical 
framework to analyse the impact of technological and 
environmental readiness on the adoption of IoT through the 
mediating role of IoT readiness in LHEIs. In addition, this 
work added to the understanding of acceptance of IoT within 
technology acceptance theories research and in the optional 
Internet behaviour context. The study provides insights into the 
state of IoT adoption to provide points of reference for 
academics, practitioners, and policymakers in promoting 
universities to adopt IoT among LHEIs. This study disregarded 
other factors such as technological and environmental 
readiness or other variables to obtain a more comprehensive 
understanding of the influence of IoT readiness in 
organizations. Furthermore, the researcher chooses IoT 
adoption rather than actual usage as a dependent variable 
because IoT is still in its introductory stage in Libya, and the 
number of actual users of IoT is limited. Some 
recommendations are made on the basis of the findings of this 
study. First, the majority of individuals in Libyan higher 
education institutions are not users and are unaware of the 
many benefits of IoT adoption, and the promotion of this 
awareness through information and training programs is thus 
necessary. Therefore, the government has the responsibility to 
develop the IT infrastructure and widen IT education in the 
Libyan universities. Second, the Libyan government should 
improve the legal infrastructure, like e-signature, privacy laws, 
and knowledge acquisition law. It can also help the LHEIs by 
ensuring better Internet infrastructure and help to encourage 
non-users to adopt IoT. Finally, the study recommends that 
Libyan universities need to provide specialised courses, 
workshops, and seminars targeted at helping their academics, 
employees, and students to understand the prerequisites for 
launching their Internet presence. 
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