
International Journal of Science Academic Research
Vol. 06, Issue 03, pp.9553-9555, March, 2025
Available online at http://www.scienceijsar.com
	

ISSN: 2582‐6425

Research Article
	

A STACK BASED APPROACH FOR A TIME‐SLOT SCHEDULING

1, *Ashish Seth, 2Kirti Seth, 3Sonam Gupta and 4Pradeep Gupta

1, 2Inha University in Tashkent, Tashkent, Uzbekistan
3, 4Ajay Kumar Garg Engineering College, Ghaziabad, UP, India

Received	17th January 2025;	Accepted	24th February 2025;	Published	online	27th March 2025

Abstract

Developing a school timetable presents distinct challenges and limitations for each educational institution, with all schools aiming to produce a
high-quality schedule. A conceptual framework for this issue allocates classes and instructors to specific time periods while preventing conflicts.
Such a model can be resolved when the workload of teachers and classes fits within the allotted schedule. However, in practical situations with
additional complexities, such as specific scheduling needs or requirements for consecutive time blocks, achieving an ideal timetable becomes
extremely challenging, and some constraints may need to be loosened to find a feasible solution. Furthermore, while quality is desired in
timetables, it is challenging to define or quantify. Scholars have investigated various methods to address timetabling problems, including graph
coloring and constraint-based approaches. Emerging educational trends necessitate greater flexibility to accommodate special requirements and
elective courses. This article examines simplifying the timetable for educational institutions at all levels. The paper identifies a gap in current
solutions and proposes an effective alternative that offers slight improvements in terms of time and space complexity.

Keywords: Time-Slot Scheduling, Stack-Based Algorithm, Timetable Optimization, NP-Complete Problems, Constraint Satisfaction.

	

INTRODUCTION

Developing a timetable is a persistent challenge for educational
institutions at the start of each academic year. The process is
labor-intensive, as it must account for various factors such as
time slots, classrooms, subjects, faculty, and students.
Balancing flexibility with convenience for all parties involved
is particularly demanding and requires substantial effort. The
creation of a timetable also encompasses several internal
complexities. For instance, educational institutions have a
limited number of classrooms and instructors. The schedule
must ensure that neither teachers nor students are double-
booked. Additionally, some classes may need to be scheduled
consecutively or kept separate. Furthermore, there may be soft
constraints to consider, such as reserving lunch hours, evenly
distributing classes, or accommodating faculty preferences for
working hours. When applied to larger scales, this problem
falls into the category of NP problems, specifically NP-
complete. This classification means that all possible
combinations must be explored to find an acceptable solution.
In computer science, an NP (Non-deterministic Polynomial
time) problem is one that can be quickly verified by a
computer but may take significantly longer to solve. The
Rubik's Cube serves as an example: while it's easy to check if
the cube is solved correctly, finding the solution can be time-
consuming depending on the complexity of the color
combinations. Constructing timetables for larger institutions
involves more variables, increasing the effort required to
develop a solution. One approach is to examine a subset of the
problem or solution spaces. While there isn't a definitive
solution, general approaches such as heuristic methods and
algorithms like Genetic Algorithms and Tabu Search can be
implemented. Based on these concepts, we attempted to design
an algorithm to address the timetable problem. This paper aims
to simplify timetable creation for educational institutions,
identifies gaps in existing solutions, and proposes a more

*Corresponding Author: Ashish Seth,
Inha University in Tashkent, Tashkent, Uzbekistan,

effective approach with improved time and space complexity.
The remainder of this paper is structured as follows: A
research Gap has been identified by carefully observing the
existing solutions. A thorough literature review has been done
to closely evaluate various solutions proposed in this field,
followed by detailed explanation of our proposed approach and
finally the proposed algorithms is evaluatedfor its
performance.

Existing Solutions – Research Gap

Extensive research has been conducted on developing
schedules and rosters for university courses and exams. While
these areas share some solution strategies, they also have
notable distinctions that researchers address independently.
Asratian & de Werra, (2002); noted that timetable creation
becomes increasingly complex when additional requirements
are considered. For example, coordinating classes that require
teacher collaboration or scheduling multiple simultaneous
courses can greatly complicate the process. In such scenarios,
achieving optimal compactness for teacher schedules becomes
challenging, ultimately impacting the overall timetable quality.
Willemen, (2001) highlighted the issue of consecutive periods,
which introduces another layer of complexity; this realistic
constraint alone significantly increases the difficulty of
efficiently solving timetabling problems.

Daskalaki & Birbas, (2005) proposed different approaches for
university and school timetables. In university settings, where
many courses involve consecutive lecture blocks, it can be
advantageous to temporarily relax the consecutive period
requirement and attempt to adjust the schedule later. This
method substantially reduces timetable creation time, making it
suitable for universities. However, in schools, where
consecutive periods are less frequent, this approach is not as
necessary. In these cases, prioritizing compact teacher
schedules remains crucial for high-quality timetables.

Burke & Rudova, (2007); Burke & Trick, (2005); etc. have
suggested a diverse range of timetabling solutions. Similarly,
Efthymios Housos et al, 2009 proposed a two-phase approach.
The first phase uses an integer programming model to assign
"work shifts" to teachers, taking into account preferred
teaching times. The second phase creates the actual timetable,
considering the work shifts but not strictly adhering to them.
This approach allows for flexibility while ensuring an optimal
overall solution. Core courses are given priority, and teacher
preferences are considered during this stage. Seth and Seth
(2022) address the challenges of sorting large healthcare
datasets and efficiently, proposed a novel multi-layered
approach. The findings from their research can be applied to
various analytics tasks that require efficient data sorting and
processing.

Ashish S, H Aggarwal, and AR Singh (2014) proposed a rule-
based approach to estimate the reliability of any systems. Their
approach considers various factors to evaluate the reliability of
any model, the findings from their research can be applied to
timetable scheduling to assess the reliability and to identify
potential bottlenecks that may affect to design an effective
timetable. Additionally, various other methods have been
proposed for these problems, including variations of graph
coloring, tabu search, constraint-based techniques, case-based
reasoning, and more.

Proposed Solution Algorithmic Steps

This research aims to propose an effective algorithm possible.
To address this problem, we employed stacks and lists. We
anticipate that solving this problem will be resource-intensive,
as it requires prior knowledge of the lessons, their weekly
frequency, and the list of groups. Each algorithm possesses
unique characteristics, and they continue to evolve over time.
For example, algorithms can be utilized to address sorting,
comparison, and searching problems. To solve these issues,
several established algorithmic techniques are available,
including Brute Force, Greedy, and Recursive algorithms. The
potential of algorithms, combined with the capabilities of
computer science, contributes to an increasingly advanced and
efficient future

Proposed algorithmics works as follows

Data Collection: Gather information about the available
subjects, their respective lecture hours per week, the number of
groups, and the available time slots.

Calculate Maximum Groups per Day: Determine the
maximum number of groups that can be accommodated in a
day by dividing the total weekly lecture hours by 5 (assuming
5 days of classes per week). Round up the result to get the
maximum number of groups.

Time Slot Allocation: Assign subjects to time slots based on
the calculated maximum groups per day. Prioritize subjects
with higher lecture hours.

Correction: Identify and correct any errors in the allocation
process, such as assigning multiple subjects to the same time
slot. Overall, the process aims to create an efficient and
feasible timetable by considering the available resources
(subjects, groups, and time slots) and ensuring that the
allocated time slots do not conflict.

The proposed algorithm will be implemented as follows

Step 1: Well, first of all we should take the list of the groups,
then we need to take subjects with their count of lessons for
per week, and number of time-slots:

Subjects Groups Timeslots

OS, 4 lectures per week 1 1: 9:00-10:30
CA, 4 lectures per week 2 2: 10:30-12:00
DB, 2 lectures per week 3 3: 12:00-13:30
LA, 2 lectures per week 4 4: 13:30-15:00

 5: 15:00-16:30
 6: 16:30-18:00

Step 2: For calculation, lets assume that every group come to
university 5 days, so we need to know how many lesson
groups can enter maximally for per day. In order to know this,
we need to add all subjects lecture counts for per week and
divide them to 5, because we have 5 days per week, then we
take upper-bound of result.

For example: (4 + 4 + 2 + 2) / 5 = 3

Step 3:

Wrong Correct

CA CA
OS OS
CA LA
OS OS
LA CA
DB DB
.

Now we have 6 slots for per day, we take one group and will
make the timetable for this group. We have to make stack for
subject which now repeat itself in +-maxLessons.

For example: maxLesson = 3;

Step 4: So now we have stack of lessons for per day and
groups list. Well, we create list of object of group which has
two fields name and map contains subject in proper day and
slot like this:

name: String

Hash<day: String, Hash<slot: String, sub: String>>

Step 5: Then we need to know whether subject is free for
asked day and slot, for that also we need to create list of
subject objects which contains its name and availability like
this:

name: String
Hash<day: String, Hash<slot: String, available: bool>>

Step 6: Now when we set lesson to slot of day we make
subject objects availability to false, if it is false already we
move to other subject, not other slot, because we want to make
easy for students. If there is no available time on this slot for
group we can move to other slot.

Step 7: To get completed timetable we need to move stack by
max Lessons, because it should be comfortable for next group.
We use loops and inner loops to get fully completed timetable.

9554 International Journal of Science Academic Research, Vol. 06, Issue 03, pp.9553-9555, March, 2025

RESULT AND ANALYSIS

The complexity of proposed algorithm is as follows;

Time complexity:

Well, we have inner loops and outer loops, below you can see
the code.

We assumed k-subjects, n-total Lecture Per Week, g-group.
So time complexity worst case is

 O(k + n * n/5 * k) + O(g * 5 * 6) = O (k(1+n*n)) = O(k*n*n)

Therefore, Time complexity: O(k*n2).

Space complexity:

Space complexity depends from key value, therefore, O(n) in
this example, it is also noticed that for larger key value, if
encryption is used then it becomes highly complex to decrypt
the same.

Conclusion

The paper presents a novel approach to timetable scheduling
using a stack-based algorithm. The proposed approach
addresses the challenges of creating efficient and flexible
timetables for educational institutions. The algorithm involves
data collection, maximum group calculation, subject
assignment, error correction, and timetable generation. The
analysis shows that the algorithm has a time complexity of
O(k*n^2) and its space complexity depends on the key values
used. The proposed approach is efficient, easy to implement,
and can be adapted to various scheduling scenarios. Future
research can explore further optimizations and extensions of
the algorithm.

REFERENCES

Ashish S, H Aggarwal, AR Singh. (2014). Estimating

Reliability of Service-Oriented Systems: A Rule Based
Approach. International Journal of Innovative Computing,
Information and Control ICIC International Volume 10,
Number 3, 1349-4198.

Asratian, A.S., & de Werra, D. (2002). A generalized class-
teacher model for some timetabling problem. European
Journal of Operational Research, 143, 531-542.

Birbas, T., Daskalaki, S., Housos, E. (1999). Rescheduling
Process of a School Timetable: The Case of the Hellenic
High Schools & Lyceums. Proc. of the 5th International
Conference of the Decision Sciences Institute, Athens,
Greece.

Efthymios Housos, Sophia Daskalaki. (2009).School
timetabling for quality student and teacher schedules.
Journal of Scheduling

Seth, A., & Seth, K. (2022). The Novel Multi-Layered
Approach to Enhance the Sorting Performance of
Healthcare Analysis, International Journal of Reliable and
Quality E-Healthcare. IGI Global. Volume 11, Issue 3

Seth, A., & Seth, K. (2021). Optimal Composition of Services
for Intelligent Systems using TOPSIS. International
Journal of Information Retrieval Research, 11(3), 49–64.
doi:10.4018/IJIRR.2021070104

https://www.sciencedirect.com/science/article/abs/pii/0360131
586900096

https://www.ijert.org/an-overview-of-the-heuristic-approaches-
for-university-course-timetabling-system

https://coderedirect.com/questions/185073/algorithm-for-
creating-a-school-timetable

Appendix-1

Implementation of the proposed approach

Classes
class Group
-name: String
-subjectAt: Hash<day: String, Hash<slot: String, sub: String>>

class Subject
-name: String
-subjectAt: Hash<day: String, Hash<slot: String, available: bool>>
-void isFree: Boolean

class SubCountForWeek
-name: Stirng
-count: Int

Methods
subjectStack = generateSubjectStack()
for(group in groupStack.length){
 group.name = groupStack.pop()
 maxLessonsPerDay = subjectStack.length()
 for(day in 1..5)
 int setLessons = 0
 bool booked = false
 for(slot in 1..6)
 sub = subjectStack.pop()
 free = sub.isFree(day, slot)
 if(free){
 sub.booked(day, slot)
 group.set(day, slot, sub.name)
 booked = true;
 setLessons++;
 }
 if(setLessons == maxLessons)
 break;
 if(!booked)
 subjectStack.push(sub);
 subjectStack.moveByMax();

Stack generateSubjectStack(){

 List subCount = [SubCountWeek(’OS‘, 4),

 SubCountWeek(’CA‘, 4),

 SubCountWeek(’DB‘, 2),

 SubCountWeek(’LA‘, 2)];
 int allLessons = getAllLessons();
 int maxLessons = allLessons/5;
 int total = 0;
 List<String> bigList;
 while(total !== allLessons)
 List<String> list;
 count = 0;
 while(count != maxLessons)
 for(sub in subCount)
 if(sub.count == 0) ||
(list.contains(sub.name))
 continue;
 else{
 list.add(sub.name)
 sub.count—;
 count++;
 total++;
 }
 bigList+=list;
}

Int getAllLessons(){
 lessons = 0;
 for(lesson in subjectsList)
 lessons+=lesson.count;
 return lessons;
}

9555 International Journal of Science Academic Research, Vol. 06, Issue 03, pp.9553-9555, March, 2025

